Boat Attack使用了Universal RP的许多新图形功能,可以用于探索 Universal RP 的使用方式和技巧。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 

755 行
26 KiB

/*
** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
** Copyright (C) 2011 Silicon Graphics, Inc.
** All Rights Reserved.
**
** Permission is hereby granted, free of charge, to any person obtaining a copy
** of this software and associated documentation files (the "Software"), to deal
** in the Software without restriction, including without limitation the rights
** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
** of the Software, and to permit persons to whom the Software is furnished to do so,
** subject to the following conditions:
**
** The above copyright notice including the dates of first publication and either this
** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be
** included in all copies or substantial portions of the Software.
**
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC.
** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
** OR OTHER DEALINGS IN THE SOFTWARE.
**
** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not
** be used in advertising or otherwise to promote the sale, use or other dealings in
** this Software without prior written authorization from Silicon Graphics, Inc.
*/
/*
** Original Author: Eric Veach, July 1994.
** libtess2: Mikko Mononen, http://code.google.com/p/libtess2/.
** LibTessDotNet: Remi Gillig, https://github.com/speps/LibTessDotNet
*/
using System;
using System.Diagnostics;
namespace UnityEngine.Experimental.Rendering.Universal
{
#if DOUBLE
using Real = System.Double;
namespace LibTessDotNet.Double
#else
using Real = System.Single;
namespace LibTessDotNet
#endif
{
internal enum WindingRule
{
EvenOdd,
NonZero,
Positive,
Negative,
AbsGeqTwo
}
internal enum ElementType
{
Polygons,
ConnectedPolygons,
BoundaryContours
}
internal enum ContourOrientation
{
Original,
Clockwise,
CounterClockwise
}
internal struct ContourVertex
{
public Vec3 Position;
public object Data;
public override string ToString()
{
return string.Format("{0}, {1}", Position, Data);
}
}
internal delegate object CombineCallback(Vec3 position, object[] data, Real[] weights);
internal partial class Tess
{
private Mesh _mesh;
private Vec3 _normal;
private Vec3 _sUnit;
private Vec3 _tUnit;
private Real _bminX, _bminY, _bmaxX, _bmaxY;
private WindingRule _windingRule;
private Dict<ActiveRegion> _dict;
private PriorityQueue<MeshUtils.Vertex> _pq;
private MeshUtils.Vertex _event;
private CombineCallback _combineCallback;
private ContourVertex[] _vertices;
private int _vertexCount;
private int[] _elements;
private int _elementCount;
public Vec3 Normal { get { return _normal; } set { _normal = value; } }
public Real SUnitX = 1;
public Real SUnitY = 0;
#if DOUBLE
public Real SentinelCoord = 4e150;
#else
public Real SentinelCoord = 4e30f;
#endif
/// <summary>
/// If true, will remove empty (zero area) polygons.
/// </summary>
public bool NoEmptyPolygons = false;
/// <summary>
/// If true, will use pooling to reduce GC (compare performance with/without, can vary wildly).
/// </summary>
public bool UsePooling = false;
public ContourVertex[] Vertices { get { return _vertices; } }
public int VertexCount { get { return _vertexCount; } }
public int[] Elements { get { return _elements; } }
public int ElementCount { get { return _elementCount; } }
public Tess()
{
_normal = Vec3.Zero;
_bminX = _bminY = _bmaxX = _bmaxY = 0;
_windingRule = WindingRule.EvenOdd;
_mesh = null;
_vertices = null;
_vertexCount = 0;
_elements = null;
_elementCount = 0;
}
private void ComputeNormal(ref Vec3 norm)
{
var v = _mesh._vHead._next;
var minVal = new Real[3] { v._coords.X, v._coords.Y, v._coords.Z };
var minVert = new MeshUtils.Vertex[3] { v, v, v };
var maxVal = new Real[3] { v._coords.X, v._coords.Y, v._coords.Z };
var maxVert = new MeshUtils.Vertex[3] { v, v, v };
for (; v != _mesh._vHead; v = v._next)
{
if (v._coords.X < minVal[0]) { minVal[0] = v._coords.X; minVert[0] = v; }
if (v._coords.Y < minVal[1]) { minVal[1] = v._coords.Y; minVert[1] = v; }
if (v._coords.Z < minVal[2]) { minVal[2] = v._coords.Z; minVert[2] = v; }
if (v._coords.X > maxVal[0]) { maxVal[0] = v._coords.X; maxVert[0] = v; }
if (v._coords.Y > maxVal[1]) { maxVal[1] = v._coords.Y; maxVert[1] = v; }
if (v._coords.Z > maxVal[2]) { maxVal[2] = v._coords.Z; maxVert[2] = v; }
}
// Find two vertices separated by at least 1/sqrt(3) of the maximum
// distance between any two vertices
int i = 0;
if (maxVal[1] - minVal[1] > maxVal[0] - minVal[0]) { i = 1; }
if (maxVal[2] - minVal[2] > maxVal[i] - minVal[i]) { i = 2; }
if (minVal[i] >= maxVal[i])
{
// All vertices are the same -- normal doesn't matter
norm = new Vec3 { X = 0, Y = 0, Z = 1 };
return;
}
// Look for a third vertex which forms the triangle with maximum area
// (Length of normal == twice the triangle area)
Real maxLen2 = 0, tLen2;
var v1 = minVert[i];
var v2 = maxVert[i];
Vec3 d1, d2, tNorm;
Vec3.Sub(ref v1._coords, ref v2._coords, out d1);
for (v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
{
Vec3.Sub(ref v._coords, ref v2._coords, out d2);
tNorm.X = d1.Y * d2.Z - d1.Z * d2.Y;
tNorm.Y = d1.Z * d2.X - d1.X * d2.Z;
tNorm.Z = d1.X * d2.Y - d1.Y * d2.X;
tLen2 = tNorm.X*tNorm.X + tNorm.Y*tNorm.Y + tNorm.Z*tNorm.Z;
if (tLen2 > maxLen2)
{
maxLen2 = tLen2;
norm = tNorm;
}
}
if (maxLen2 <= 0.0f)
{
// All points lie on a single line -- any decent normal will do
norm = Vec3.Zero;
i = Vec3.LongAxis(ref d1);
norm[i] = 1;
}
}
private void CheckOrientation()
{
// When we compute the normal automatically, we choose the orientation
// so that the the sum of the signed areas of all contours is non-negative.
Real area = 0.0f;
for (var f = _mesh._fHead._next; f != _mesh._fHead; f = f._next)
{
if (f._anEdge._winding <= 0)
{
continue;
}
area += MeshUtils.FaceArea(f);
}
if (area < 0.0f)
{
// Reverse the orientation by flipping all the t-coordinates
for (var v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
{
v._t = -v._t;
}
Vec3.Neg(ref _tUnit);
}
}
private void ProjectPolygon()
{
var norm = _normal;
bool computedNormal = false;
if (norm.X == 0.0f && norm.Y == 0.0f && norm.Z == 0.0f)
{
ComputeNormal(ref norm);
_normal = norm;
computedNormal = true;
}
int i = Vec3.LongAxis(ref norm);
_sUnit[i] = 0;
_sUnit[(i + 1) % 3] = SUnitX;
_sUnit[(i + 2) % 3] = SUnitY;
_tUnit[i] = 0;
_tUnit[(i + 1) % 3] = norm[i] > 0.0f ? -SUnitY : SUnitY;
_tUnit[(i + 2) % 3] = norm[i] > 0.0f ? SUnitX : -SUnitX;
// Project the vertices onto the sweep plane
for (var v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
{
Vec3.Dot(ref v._coords, ref _sUnit, out v._s);
Vec3.Dot(ref v._coords, ref _tUnit, out v._t);
}
if (computedNormal)
{
CheckOrientation();
}
// Compute ST bounds.
bool first = true;
for (var v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
{
if (first)
{
_bminX = _bmaxX = v._s;
_bminY = _bmaxY = v._t;
first = false;
}
else
{
if (v._s < _bminX) _bminX = v._s;
if (v._s > _bmaxX) _bmaxX = v._s;
if (v._t < _bminY) _bminY = v._t;
if (v._t > _bmaxY) _bmaxY = v._t;
}
}
}
/// <summary>
/// TessellateMonoRegion( face ) tessellates a monotone region
/// (what else would it do??) The region must consist of a single
/// loop of half-edges (see mesh.h) oriented CCW. "Monotone" in this
/// case means that any vertical line intersects the interior of the
/// region in a single interval.
///
/// Tessellation consists of adding interior edges (actually pairs of
/// half-edges), to split the region into non-overlapping triangles.
///
/// The basic idea is explained in Preparata and Shamos (which I don't
/// have handy right now), although their implementation is more
/// complicated than this one. The are two edge chains, an upper chain
/// and a lower chain. We process all vertices from both chains in order,
/// from right to left.
///
/// The algorithm ensures that the following invariant holds after each
/// vertex is processed: the untessellated region consists of two
/// chains, where one chain (say the upper) is a single edge, and
/// the other chain is concave. The left vertex of the single edge
/// is always to the left of all vertices in the concave chain.
///
/// Each step consists of adding the rightmost unprocessed vertex to one
/// of the two chains, and forming a fan of triangles from the rightmost
/// of two chain endpoints. Determining whether we can add each triangle
/// to the fan is a simple orientation test. By making the fan as large
/// as possible, we restore the invariant (check it yourself).
/// </summary>
private void TessellateMonoRegion(MeshUtils.Face face)
{
// All edges are oriented CCW around the boundary of the region.
// First, find the half-edge whose origin vertex is rightmost.
// Since the sweep goes from left to right, face->anEdge should
// be close to the edge we want.
var up = face._anEdge;
Debug.Assert(up._Lnext != up && up._Lnext._Lnext != up);
while (Geom.VertLeq(up._Dst, up._Org)) up = up._Lprev;
while (Geom.VertLeq(up._Org, up._Dst)) up = up._Lnext;
var lo = up._Lprev;
while (up._Lnext != lo)
{
if (Geom.VertLeq(up._Dst, lo._Org))
{
// up.Dst is on the left. It is safe to form triangles from lo.Org.
// The EdgeGoesLeft test guarantees progress even when some triangles
// are CW, given that the upper and lower chains are truly monotone.
while (lo._Lnext != up && (Geom.EdgeGoesLeft(lo._Lnext)
|| Geom.EdgeSign(lo._Org, lo._Dst, lo._Lnext._Dst) <= 0.0f))
{
lo = _mesh.Connect(lo._Lnext, lo)._Sym;
}
lo = lo._Lprev;
}
else
{
// lo.Org is on the left. We can make CCW triangles from up.Dst.
while (lo._Lnext != up && (Geom.EdgeGoesRight(up._Lprev)
|| Geom.EdgeSign(up._Dst, up._Org, up._Lprev._Org) >= 0.0f))
{
up = _mesh.Connect(up, up._Lprev)._Sym;
}
up = up._Lnext;
}
}
// Now lo.Org == up.Dst == the leftmost vertex. The remaining region
// can be tessellated in a fan from this leftmost vertex.
Debug.Assert(lo._Lnext != up);
while (lo._Lnext._Lnext != up)
{
lo = _mesh.Connect(lo._Lnext, lo)._Sym;
}
}
/// <summary>
/// TessellateInterior( mesh ) tessellates each region of
/// the mesh which is marked "inside" the polygon. Each such region
/// must be monotone.
/// </summary>
private void TessellateInterior()
{
MeshUtils.Face f, next;
for (f = _mesh._fHead._next; f != _mesh._fHead; f = next)
{
// Make sure we don't try to tessellate the new triangles.
next = f._next;
if (f._inside)
{
TessellateMonoRegion(f);
}
}
}
/// <summary>
/// DiscardExterior zaps (ie. sets to null) all faces
/// which are not marked "inside" the polygon. Since further mesh operations
/// on NULL faces are not allowed, the main purpose is to clean up the
/// mesh so that exterior loops are not represented in the data structure.
/// </summary>
private void DiscardExterior()
{
MeshUtils.Face f, next;
for (f = _mesh._fHead._next; f != _mesh._fHead; f = next)
{
// Since f will be destroyed, save its next pointer.
next = f._next;
if( ! f._inside ) {
_mesh.ZapFace(f);
}
}
}
/// <summary>
/// SetWindingNumber( value, keepOnlyBoundary ) resets the
/// winding numbers on all edges so that regions marked "inside" the
/// polygon have a winding number of "value", and regions outside
/// have a winding number of 0.
///
/// If keepOnlyBoundary is TRUE, it also deletes all edges which do not
/// separate an interior region from an exterior one.
/// </summary>
private void SetWindingNumber(int value, bool keepOnlyBoundary)
{
MeshUtils.Edge e, eNext;
for (e = _mesh._eHead._next; e != _mesh._eHead; e = eNext)
{
eNext = e._next;
if (e._Rface._inside != e._Lface._inside)
{
/* This is a boundary edge (one side is interior, one is exterior). */
e._winding = (e._Lface._inside) ? value : -value;
}
else
{
/* Both regions are interior, or both are exterior. */
if (!keepOnlyBoundary)
{
e._winding = 0;
}
else
{
_mesh.Delete(e);
}
}
}
}
private int GetNeighbourFace(MeshUtils.Edge edge)
{
if (edge._Rface == null)
return MeshUtils.Undef;
if (!edge._Rface._inside)
return MeshUtils.Undef;
return edge._Rface._n;
}
private void OutputPolymesh(ElementType elementType, int polySize)
{
MeshUtils.Vertex v;
MeshUtils.Face f;
MeshUtils.Edge edge;
int maxFaceCount = 0;
int maxVertexCount = 0;
int faceVerts, i;
if (polySize < 3)
{
polySize = 3;
}
// Assume that the input data is triangles now.
// Try to merge as many polygons as possible
if (polySize > 3)
{
_mesh.MergeConvexFaces(polySize);
}
// Mark unused
for (v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
v._n = MeshUtils.Undef;
// Create unique IDs for all vertices and faces.
for (f = _mesh._fHead._next; f != _mesh._fHead; f = f._next)
{
f._n = MeshUtils.Undef;
if (!f._inside) continue;
if (NoEmptyPolygons)
{
var area = MeshUtils.FaceArea(f);
if (Math.Abs(area) < Real.Epsilon)
{
continue;
}
}
edge = f._anEdge;
faceVerts = 0;
do {
v = edge._Org;
if (v._n == MeshUtils.Undef)
{
v._n = maxVertexCount;
maxVertexCount++;
}
faceVerts++;
edge = edge._Lnext;
}
while (edge != f._anEdge);
Debug.Assert(faceVerts <= polySize);
f._n = maxFaceCount;
++maxFaceCount;
}
_elementCount = maxFaceCount;
if (elementType == ElementType.ConnectedPolygons)
maxFaceCount *= 2;
_elements = new int[maxFaceCount * polySize];
_vertexCount = maxVertexCount;
_vertices = new ContourVertex[_vertexCount];
// Output vertices.
for (v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
{
if (v._n != MeshUtils.Undef)
{
// Store coordinate
_vertices[v._n].Position = v._coords;
_vertices[v._n].Data = v._data;
}
}
// Output indices.
int elementIndex = 0;
for (f = _mesh._fHead._next; f != _mesh._fHead; f = f._next)
{
if (!f._inside) continue;
if (NoEmptyPolygons)
{
var area = MeshUtils.FaceArea(f);
if (Math.Abs(area) < Real.Epsilon)
{
continue;
}
}
// Store polygon
edge = f._anEdge;
faceVerts = 0;
do {
v = edge._Org;
_elements[elementIndex++] = v._n;
faceVerts++;
edge = edge._Lnext;
} while (edge != f._anEdge);
// Fill unused.
for (i = faceVerts; i < polySize; ++i)
{
_elements[elementIndex++] = MeshUtils.Undef;
}
// Store polygon connectivity
if (elementType == ElementType.ConnectedPolygons)
{
edge = f._anEdge;
do
{
_elements[elementIndex++] = GetNeighbourFace(edge);
edge = edge._Lnext;
} while (edge != f._anEdge);
// Fill unused.
for (i = faceVerts; i < polySize; ++i)
{
_elements[elementIndex++] = MeshUtils.Undef;
}
}
}
}
private void OutputContours()
{
MeshUtils.Face f;
MeshUtils.Edge edge, start;
int startVert = 0;
int vertCount = 0;
_vertexCount = 0;
_elementCount = 0;
for (f = _mesh._fHead._next; f != _mesh._fHead; f = f._next)
{
if (!f._inside) continue;
start = edge = f._anEdge;
do
{
++_vertexCount;
edge = edge._Lnext;
}
while (edge != start);
++_elementCount;
}
_elements = new int[_elementCount * 2];
_vertices = new ContourVertex[_vertexCount];
int vertIndex = 0;
int elementIndex = 0;
startVert = 0;
for (f = _mesh._fHead._next; f != _mesh._fHead; f = f._next)
{
if (!f._inside) continue;
vertCount = 0;
start = edge = f._anEdge;
do {
_vertices[vertIndex].Position = edge._Org._coords;
_vertices[vertIndex].Data = edge._Org._data;
++vertIndex;
++vertCount;
edge = edge._Lnext;
} while (edge != start);
_elements[elementIndex++] = startVert;
_elements[elementIndex++] = vertCount;
startVert += vertCount;
}
}
private Real SignedArea(ContourVertex[] vertices)
{
Real area = 0.0f;
for (int i = 0; i < vertices.Length; i++)
{
var v0 = vertices[i];
var v1 = vertices[(i + 1) % vertices.Length];
area += v0.Position.X * v1.Position.Y;
area -= v0.Position.Y * v1.Position.X;
}
return 0.5f * area;
}
public void AddContour(ContourVertex[] vertices)
{
AddContour(vertices, ContourOrientation.Original);
}
public void AddContour(ContourVertex[] vertices, ContourOrientation forceOrientation)
{
if (_mesh == null)
{
_mesh = new Mesh();
}
bool reverse = false;
if (forceOrientation != ContourOrientation.Original)
{
var area = SignedArea(vertices);
reverse = (forceOrientation == ContourOrientation.Clockwise && area < 0.0f) || (forceOrientation == ContourOrientation.CounterClockwise && area > 0.0f);
}
MeshUtils.Edge e = null;
for (int i = 0; i < vertices.Length; ++i)
{
if (e == null)
{
e = _mesh.MakeEdge();
_mesh.Splice(e, e._Sym);
}
else
{
// Create a new vertex and edge which immediately follow e
// in the ordering around the left face.
_mesh.SplitEdge(e);
e = e._Lnext;
}
int index = reverse ? vertices.Length - 1 - i : i;
// The new vertex is now e._Org.
e._Org._coords = vertices[index].Position;
e._Org._data = vertices[index].Data;
// The winding of an edge says how the winding number changes as we
// cross from the edge's right face to its left face. We add the
// vertices in such an order that a CCW contour will add +1 to
// the winding number of the region inside the contour.
e._winding = 1;
e._Sym._winding = -1;
}
}
public void Tessellate(WindingRule windingRule, ElementType elementType, int polySize)
{
Tessellate(windingRule, elementType, polySize, null);
}
public void Tessellate(WindingRule windingRule, ElementType elementType, int polySize, CombineCallback combineCallback)
{
_normal = Vec3.Zero;
_vertices = null;
_elements = null;
_windingRule = windingRule;
_combineCallback = combineCallback;
if (_mesh == null)
{
return;
}
// Determine the polygon normal and project vertices onto the plane
// of the polygon.
ProjectPolygon();
// ComputeInterior computes the planar arrangement specified
// by the given contours, and further subdivides this arrangement
// into regions. Each region is marked "inside" if it belongs
// to the polygon, according to the rule given by windingRule.
// Each interior region is guaranteed be monotone.
ComputeInterior();
// If the user wants only the boundary contours, we throw away all edges
// except those which separate the interior from the exterior.
// Otherwise we tessellate all the regions marked "inside".
if (elementType == ElementType.BoundaryContours)
{
SetWindingNumber(1, true);
}
else
{
TessellateInterior();
}
_mesh.Check();
if (elementType == ElementType.BoundaryContours)
{
OutputContours();
}
else
{
OutputPolymesh(elementType, polySize);
}
if (UsePooling)
{
_mesh.Free();
}
_mesh = null;
}
}
}
}