103 行
3.3 KiB
103 行
3.3 KiB
#ifndef GERSTNER_WAVES_INCLUDED
|
|
#define GERSTNER_WAVES_INCLUDED
|
|
|
|
uniform uint _WaveCount; // how many waves, set via the water component
|
|
float _GlobalTime; // global scene time
|
|
|
|
struct Wave
|
|
{
|
|
half amplitude;
|
|
half direction;
|
|
half wavelength;
|
|
half2 origin;
|
|
half omni;
|
|
};
|
|
|
|
#if defined(USE_STRUCTURED_BUFFER)
|
|
StructuredBuffer<Wave> _WaveDataBuffer;
|
|
#else
|
|
half4 waveData[20]; // 0-9 amplitude, direction, wavelength, omni, 10-19 origin.xy
|
|
#endif
|
|
|
|
struct WaveStruct
|
|
{
|
|
float3 position;
|
|
float3 normal;
|
|
};
|
|
|
|
WaveStruct GerstnerWave(half2 pos, float waveCountMulti, half amplitude, half direction, half wavelength, half omni, half2 omniPos)
|
|
{
|
|
WaveStruct waveOut;
|
|
|
|
////////////////////////////////wave value calculations//////////////////////////
|
|
half3 wave = 0; // wave vector
|
|
half w = 6.28318 / wavelength; // 2pi over wavelength(hardcoded)
|
|
half wSpeed = sqrt(9.8 * w); // frequency of the wave based off wavelength
|
|
half peak = 1; // peak value, 1 is the sharpest peaks
|
|
half qi = peak / (amplitude * w * _WaveCount);
|
|
|
|
direction = radians(direction); // convert the incoming degrees to radians, for directional waves
|
|
half2 dirWaveInput = half2(sin(direction), cos(direction)) * (1 - omni);
|
|
half2 omniWaveInput = (pos - omniPos) * omni;
|
|
|
|
half2 windDir = normalize(dirWaveInput + omniWaveInput); // calculate wind direction
|
|
half dir = dot(windDir, pos - (omniPos * omni)); // calculate a gradient along the wind direction
|
|
|
|
////////////////////////////position output calculations/////////////////////////
|
|
half calc = dir * w + -_GlobalTime * wSpeed; // the wave calculation
|
|
half cosCalc = cos(calc); // cosine version(used for horizontal undulation)
|
|
half sinCalc = sin(calc); // sin version(used for vertical undulation)
|
|
|
|
// calculate the offsets for the current point
|
|
wave.xz = qi * amplitude * windDir.xy * cosCalc;
|
|
wave.y = ((sinCalc * amplitude)) * waveCountMulti;// the height is divided by the number of waves
|
|
|
|
////////////////////////////normal output calculations/////////////////////////
|
|
half wa = w * amplitude;
|
|
// normal vector
|
|
half3 n = half3(-(windDir.xy * wa * cosCalc),
|
|
1-(qi * wa * sinCalc));
|
|
|
|
////////////////////////////////assign to output///////////////////////////////
|
|
waveOut.position = wave * saturate(amplitude * 10000);
|
|
waveOut.normal = (n * waveCountMulti);
|
|
|
|
return waveOut;
|
|
}
|
|
|
|
inline void SampleWaves(float3 position, half opacity, out WaveStruct waveOut)
|
|
{
|
|
half2 pos = position.xz;
|
|
WaveStruct waves[10];
|
|
waveOut.position = 0;
|
|
waveOut.normal = 0;
|
|
half waveCountMulti = 1.0 / _WaveCount;
|
|
half3 opacityMask = saturate(half3(3, 1, 3) * opacity);
|
|
|
|
UNITY_LOOP
|
|
for(uint i = 0; i < _WaveCount; i++)
|
|
{
|
|
#if defined(USE_STRUCTURED_BUFFER)
|
|
waves[i] = GerstnerWave(pos,
|
|
waveCountMulti,
|
|
_WaveDataBuffer[i].amplitude,
|
|
_WaveDataBuffer[i].direction,
|
|
_WaveDataBuffer[i].wavelength,
|
|
_WaveDataBuffer[i].omni,
|
|
_WaveDataBuffer[i].origin); // calculate the wave
|
|
#else
|
|
waves[i] = GerstnerWave(pos,
|
|
waveCountMulti,
|
|
waveData[i].x,
|
|
waveData[i].y,
|
|
waveData[i].z,
|
|
waveData[i].w,
|
|
waveData[i + 10].xy); // calculate the wave
|
|
|
|
#endif
|
|
waveOut.position += waves[i].position * opacityMask; // add the position
|
|
waveOut.normal += waves[i].normal * opacityMask; // add the normal
|
|
}
|
|
}
|
|
|
|
#endif // GERSTNER_WAVES_INCLUDED
|