Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

380 行
20 KiB

import logging
import numpy as np
import tensorflow as tf
import tensorflow.contrib.layers as c_layers
logger = logging.getLogger("mlagents.envs")
class LearningModel(object):
_version_number_ = 1
def __init__(self, m_size, normalize, use_recurrent, brain, seed):
tf.set_random_seed(seed)
self.brain = brain
self.vector_in = None
self.global_step, self.increment_step = self.create_global_steps()
self.visual_in = []
self.batch_size = tf.placeholder(shape=None, dtype=tf.int32, name='batch_size')
self.sequence_length = tf.placeholder(shape=None, dtype=tf.int32, name='sequence_length')
self.mask_input = tf.placeholder(shape=[None], dtype=tf.float32, name='masks')
self.mask = tf.cast(self.mask_input, tf.int32)
self.use_recurrent = use_recurrent
if self.use_recurrent:
self.m_size = m_size
else:
self.m_size = 0
self.normalize = normalize
self.act_size = brain.vector_action_space_size
self.vec_obs_size = brain.vector_observation_space_size * \
brain.num_stacked_vector_observations
self.vis_obs_size = brain.number_visual_observations
tf.Variable(int(brain.vector_action_space_type == 'continuous'),
name='is_continuous_control', trainable=False, dtype=tf.int32)
tf.Variable(self._version_number_, name='version_number', trainable=False, dtype=tf.int32)
tf.Variable(self.m_size, name="memory_size", trainable=False, dtype=tf.int32)
if brain.vector_action_space_type == 'continuous':
tf.Variable(self.act_size[0], name="action_output_shape", trainable=False, dtype=tf.int32)
else:
tf.Variable(sum(self.act_size), name="action_output_shape", trainable=False, dtype=tf.int32)
@staticmethod
def create_global_steps():
"""Creates TF ops to track and increment global training step."""
global_step = tf.Variable(0, name="global_step", trainable=False, dtype=tf.int32)
increment_step = tf.assign(global_step, tf.add(global_step, 1))
return global_step, increment_step
@staticmethod
def swish(input_activation):
"""Swish activation function. For more info: https://arxiv.org/abs/1710.05941"""
return tf.multiply(input_activation, tf.nn.sigmoid(input_activation))
@staticmethod
def create_visual_input(camera_parameters, name):
"""
Creates image input op.
:param camera_parameters: Parameters for visual observation from BrainInfo.
:param name: Desired name of input op.
:return: input op.
"""
o_size_h = camera_parameters['height']
o_size_w = camera_parameters['width']
bw = camera_parameters['blackAndWhite']
if bw:
c_channels = 1
else:
c_channels = 3
visual_in = tf.placeholder(shape=[None, o_size_h, o_size_w, c_channels], dtype=tf.float32,
name=name)
return visual_in
def create_vector_input(self, name='vector_observation'):
"""
Creates ops for vector observation input.
:param name: Name of the placeholder op.
:param vec_obs_size: Size of stacked vector observation.
:return:
"""
self.vector_in = tf.placeholder(shape=[None, self.vec_obs_size], dtype=tf.float32,
name=name)
if self.normalize:
self.running_mean = tf.get_variable("running_mean", [self.vec_obs_size],
trainable=False, dtype=tf.float32,
initializer=tf.zeros_initializer())
self.running_variance = tf.get_variable("running_variance", [self.vec_obs_size],
trainable=False,
dtype=tf.float32,
initializer=tf.ones_initializer())
self.update_mean, self.update_variance = self.create_normalizer_update(self.vector_in)
self.normalized_state = tf.clip_by_value((self.vector_in - self.running_mean) / tf.sqrt(
self.running_variance / (tf.cast(self.global_step, tf.float32) + 1)), -5, 5,
name="normalized_state")
return self.normalized_state
else:
return self.vector_in
def create_normalizer_update(self, vector_input):
mean_current_observation = tf.reduce_mean(vector_input, axis=0)
new_mean = self.running_mean + (mean_current_observation - self.running_mean) / \
tf.cast(tf.add(self.global_step, 1), tf.float32)
new_variance = self.running_variance + (mean_current_observation - new_mean) * \
(mean_current_observation - self.running_mean)
update_mean = tf.assign(self.running_mean, new_mean)
update_variance = tf.assign(self.running_variance, new_variance)
return update_mean, update_variance
@staticmethod
def create_vector_observation_encoder(observation_input, h_size, activation, num_layers, scope,
reuse):
"""
Builds a set of hidden state encoders.
:param reuse: Whether to re-use the weights within the same scope.
:param scope: Graph scope for the encoder ops.
:param observation_input: Input vector.
:param h_size: Hidden layer size.
:param activation: What type of activation function to use for layers.
:param num_layers: number of hidden layers to create.
:return: List of hidden layer tensors.
"""
with tf.variable_scope(scope):
hidden = observation_input
for i in range(num_layers):
hidden = tf.layers.dense(hidden, h_size, activation=activation, reuse=reuse,
name="hidden_{}".format(i),
kernel_initializer=c_layers.variance_scaling_initializer(
1.0))
return hidden
def create_visual_observation_encoder(self, image_input, h_size, activation, num_layers, scope,
reuse):
"""
Builds a set of visual (CNN) encoders.
:param reuse: Whether to re-use the weights within the same scope.
:param scope: The scope of the graph within which to create the ops.
:param image_input: The placeholder for the image input to use.
:param h_size: Hidden layer size.
:param activation: What type of activation function to use for layers.
:param num_layers: number of hidden layers to create.
:return: List of hidden layer tensors.
"""
with tf.variable_scope(scope):
conv1 = tf.layers.conv2d(image_input, 16, kernel_size=[8, 8], strides=[4, 4],
activation=tf.nn.elu, reuse=reuse, name="conv_1")
conv2 = tf.layers.conv2d(conv1, 32, kernel_size=[4, 4], strides=[2, 2],
activation=tf.nn.elu, reuse=reuse, name="conv_2")
hidden = c_layers.flatten(conv2)
with tf.variable_scope(scope + '/' + 'flat_encoding'):
hidden_flat = self.create_vector_observation_encoder(hidden, h_size, activation,
num_layers, scope, reuse)
return hidden_flat
@staticmethod
def create_discrete_action_masking_layer(all_logits, action_masks, action_size):
"""
Creates a masking layer for the discrete actions
:param all_logits: The concatenated unnormalized action probabilities for all branches
:param action_masks: The mask for the logits. Must be of dimension [None x total_number_of_action]
:param action_size: A list containing the number of possible actions for each branch
:return: The action output dimension [batch_size, num_branches] and the concatenated normalized logits
"""
action_idx = [0] + list(np.cumsum(action_size))
branches_logits = [all_logits[:, action_idx[i]:action_idx[i + 1]] for i in range(len(action_size))]
branch_masks = [action_masks[:, action_idx[i]:action_idx[i + 1]] for i in range(len(action_size))]
raw_probs = [tf.multiply(tf.nn.softmax(branches_logits[k]) + 1.0e-10, branch_masks[k])
for k in range(len(action_size))]
normalized_probs = [
tf.divide(raw_probs[k], tf.reduce_sum(raw_probs[k], axis=1, keepdims=True))
for k in range(len(action_size))]
output = tf.concat([tf.multinomial(tf.log(normalized_probs[k]), 1) for k in range(len(action_size))], axis=1)
return output, tf.concat([tf.log(normalized_probs[k] + 1.0e-10) for k in range(len(action_size))], axis=1)
def create_observation_streams(self, num_streams, h_size, num_layers):
"""
Creates encoding stream for observations.
:param num_streams: Number of streams to create.
:param h_size: Size of hidden linear layers in stream.
:param num_layers: Number of hidden linear layers in stream.
:return: List of encoded streams.
"""
brain = self.brain
activation_fn = self.swish
self.visual_in = []
for i in range(brain.number_visual_observations):
visual_input = self.create_visual_input(brain.camera_resolutions[i],
name="visual_observation_" + str(i))
self.visual_in.append(visual_input)
vector_observation_input = self.create_vector_input()
final_hiddens = []
for i in range(num_streams):
visual_encoders = []
hidden_state, hidden_visual = None, None
if self.vis_obs_size > 0:
for j in range(brain.number_visual_observations):
encoded_visual = self.create_visual_observation_encoder(self.visual_in[j],
h_size,
activation_fn,
num_layers,
"main_graph_{}_encoder{}"
.format(i, j), False)
visual_encoders.append(encoded_visual)
hidden_visual = tf.concat(visual_encoders, axis=1)
if brain.vector_observation_space_size > 0:
hidden_state = self.create_vector_observation_encoder(vector_observation_input,
h_size, activation_fn,
num_layers,
"main_graph_{}".format(i),
False)
if hidden_state is not None and hidden_visual is not None:
final_hidden = tf.concat([hidden_visual, hidden_state], axis=1)
elif hidden_state is None and hidden_visual is not None:
final_hidden = hidden_visual
elif hidden_state is not None and hidden_visual is None:
final_hidden = hidden_state
else:
raise Exception("No valid network configuration possible. "
"There are no states or observations in this brain")
final_hiddens.append(final_hidden)
return final_hiddens
@staticmethod
def create_recurrent_encoder(input_state, memory_in, sequence_length, name='lstm'):
"""
Builds a recurrent encoder for either state or observations (LSTM).
:param sequence_length: Length of sequence to unroll.
:param input_state: The input tensor to the LSTM cell.
:param memory_in: The input memory to the LSTM cell.
:param name: The scope of the LSTM cell.
"""
s_size = input_state.get_shape().as_list()[1]
m_size = memory_in.get_shape().as_list()[1]
lstm_input_state = tf.reshape(input_state, shape=[-1, sequence_length, s_size])
memory_in = tf.reshape(memory_in[:, :], [-1, m_size])
_half_point = int(m_size / 2)
with tf.variable_scope(name):
rnn_cell = tf.contrib.rnn.BasicLSTMCell(_half_point)
lstm_vector_in = tf.contrib.rnn.LSTMStateTuple(memory_in[:, :_half_point],
memory_in[:, _half_point:])
recurrent_output, lstm_state_out = tf.nn.dynamic_rnn(rnn_cell, lstm_input_state,
initial_state=lstm_vector_in)
recurrent_output = tf.reshape(recurrent_output, shape=[-1, _half_point])
return recurrent_output, tf.concat([lstm_state_out.c, lstm_state_out.h], axis=1)
def create_cc_actor_critic(self, h_size, num_layers):
"""
Creates Continuous control actor-critic model.
:param h_size: Size of hidden linear layers.
:param num_layers: Number of hidden linear layers.
"""
hidden_streams = self.create_observation_streams(2, h_size, num_layers)
if self.use_recurrent:
self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32,
name='recurrent_in')
_half_point = int(self.m_size / 2)
hidden_policy, memory_policy_out = self.create_recurrent_encoder(
hidden_streams[0], self.memory_in[:, :_half_point], self.sequence_length,
name='lstm_policy')
hidden_value, memory_value_out = self.create_recurrent_encoder(
hidden_streams[1], self.memory_in[:, _half_point:], self.sequence_length,
name='lstm_value')
self.memory_out = tf.concat([memory_policy_out, memory_value_out], axis=1,
name='recurrent_out')
else:
hidden_policy = hidden_streams[0]
hidden_value = hidden_streams[1]
mu = tf.layers.dense(hidden_policy, self.act_size[0], activation=None,
kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01))
log_sigma_sq = tf.get_variable("log_sigma_squared", [self.act_size[0]], dtype=tf.float32,
initializer=tf.zeros_initializer())
sigma_sq = tf.exp(log_sigma_sq)
self.epsilon = tf.placeholder(shape=[None, self.act_size[0]], dtype=tf.float32, name='epsilon')
# Clip and scale output to ensure actions are always within [-1, 1] range.
self.output_pre = mu + tf.sqrt(sigma_sq) * self.epsilon
output_post = tf.clip_by_value(self.output_pre, -3, 3) / 3
self.output = tf.identity(output_post, name='action')
self.selected_actions = tf.stop_gradient(output_post)
# Compute probability of model output.
all_probs = - 0.5 * tf.square(tf.stop_gradient(self.output_pre) - mu) / sigma_sq \
- 0.5 * tf.log(2.0 * np.pi) - 0.5 * log_sigma_sq
self.all_log_probs = tf.identity(all_probs, name='action_probs')
self.entropy = 0.5 * tf.reduce_mean(tf.log(2 * np.pi * np.e) + log_sigma_sq)
value = tf.layers.dense(hidden_value, 1, activation=None)
self.value = tf.identity(value, name="value_estimate")
self.all_old_log_probs = tf.placeholder(shape=[None, self.act_size[0]], dtype=tf.float32,
name='old_probabilities')
# We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control.
self.log_probs = tf.reduce_sum((tf.identity(self.all_log_probs)), axis=1, keepdims=True)
self.old_log_probs = tf.reduce_sum((tf.identity(self.all_old_log_probs)), axis=1,
keepdims=True)
def create_dc_actor_critic(self, h_size, num_layers):
"""
Creates Discrete control actor-critic model.
:param h_size: Size of hidden linear layers.
:param num_layers: Number of hidden linear layers.
"""
hidden_streams = self.create_observation_streams(1, h_size, num_layers)
hidden = hidden_streams[0]
if self.use_recurrent:
self.prev_action = tf.placeholder(shape=[None, len(self.act_size)], dtype=tf.int32,
name='prev_action')
prev_action_oh = tf.concat([
tf.one_hot(self.prev_action[:, i], self.act_size[i]) for i in
range(len(self.act_size))], axis=1)
hidden = tf.concat([hidden, prev_action_oh], axis=1)
self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32,
name='recurrent_in')
hidden, memory_out = self.create_recurrent_encoder(hidden, self.memory_in,
self.sequence_length)
self.memory_out = tf.identity(memory_out, name='recurrent_out')
policy_branches = []
for size in self.act_size:
policy_branches.append(tf.layers.dense(hidden, size, activation=None, use_bias=False,
kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01)))
self.all_log_probs = tf.concat([branch for branch in policy_branches], axis=1, name="action_probs")
self.action_masks = tf.placeholder(shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks")
output, normalized_logits = self.create_discrete_action_masking_layer(
self.all_log_probs, self.action_masks, self.act_size)
self.output = tf.identity(output)
self.normalized_logits = tf.identity(normalized_logits, name='action')
value = tf.layers.dense(hidden, 1, activation=None)
self.value = tf.identity(value, name="value_estimate")
self.action_holder = tf.placeholder(
shape=[None, len(policy_branches)], dtype=tf.int32, name="action_holder")
self.action_oh = tf.concat([
tf.one_hot(self.action_holder[:, i], self.act_size[i]) for i in range(len(self.act_size))], axis=1)
self.selected_actions = tf.stop_gradient(self.action_oh)
self.all_old_log_probs = tf.placeholder(
shape=[None, sum(self.act_size)], dtype=tf.float32, name='old_probabilities')
_, old_normalized_logits = self.create_discrete_action_masking_layer(
self.all_old_log_probs, self.action_masks, self.act_size)
action_idx = [0] + list(np.cumsum(self.act_size))
self.entropy = tf.reduce_sum((tf.stack([
tf.nn.softmax_cross_entropy_with_logits_v2(
labels=tf.nn.softmax(self.all_log_probs[:, action_idx[i]:action_idx[i + 1]]),
logits=self.all_log_probs[:, action_idx[i]:action_idx[i + 1]])
for i in range(len(self.act_size))], axis=1)), axis=1)
self.log_probs = tf.reduce_sum((tf.stack([
-tf.nn.softmax_cross_entropy_with_logits_v2(
labels=self.action_oh[:, action_idx[i]:action_idx[i + 1]],
logits=normalized_logits[:, action_idx[i]:action_idx[i + 1]]
)
for i in range(len(self.act_size))], axis=1)), axis=1, keepdims=True)
self.old_log_probs = tf.reduce_sum((tf.stack([
-tf.nn.softmax_cross_entropy_with_logits_v2(
labels=self.action_oh[:, action_idx[i]:action_idx[i + 1]],
logits=old_normalized_logits[:, action_idx[i]:action_idx[i + 1]]
)
for i in range(len(self.act_size))], axis=1)), axis=1, keepdims=True)