您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
251 行
12 KiB
251 行
12 KiB
# # Unity ML-Agents Toolkit
|
|
# ## ML-Agent Learning (Imitation)
|
|
# Contains an implementation of Behavioral Cloning Algorithm
|
|
|
|
import logging
|
|
import os
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from mlagents.envs import AllBrainInfo
|
|
from mlagents.trainers.bc.policy import BCPolicy
|
|
from mlagents.trainers.buffer import Buffer
|
|
from mlagents.trainers.trainer import UnityTrainerException, Trainer
|
|
|
|
logger = logging.getLogger("mlagents.envs")
|
|
|
|
|
|
class BehavioralCloningTrainer(Trainer):
|
|
"""The ImitationTrainer is an implementation of the imitation learning."""
|
|
|
|
def __init__(self, sess, brain, trainer_parameters, training, seed, run_id):
|
|
"""
|
|
Responsible for collecting experiences and training PPO model.
|
|
:param sess: Tensorflow session.
|
|
:param trainer_parameters: The parameters for the trainer (dictionary).
|
|
:param training: Whether the trainer is set for training.
|
|
"""
|
|
super(BehavioralCloningTrainer, self).__init__(sess, brain, trainer_parameters, training, run_id)
|
|
|
|
self.param_keys = ['brain_to_imitate', 'batch_size', 'time_horizon',
|
|
'graph_scope', 'summary_freq', 'max_steps',
|
|
'batches_per_epoch', 'use_recurrent',
|
|
'hidden_units','learning_rate', 'num_layers',
|
|
'sequence_length', 'memory_size']
|
|
|
|
for k in self.param_keys:
|
|
if k not in trainer_parameters:
|
|
raise UnityTrainerException("The hyperparameter {0} could not be found for the Imitation trainer of "
|
|
"brain {1}.".format(k, brain.brain_name))
|
|
|
|
self.policy = BCPolicy(seed, brain, trainer_parameters, sess)
|
|
self.brain_name = brain.brain_name
|
|
self.brain_to_imitate = trainer_parameters['brain_to_imitate']
|
|
self.batches_per_epoch = trainer_parameters['batches_per_epoch']
|
|
self.n_sequences = max(int(trainer_parameters['batch_size'] / self.policy.sequence_length), 1)
|
|
self.cumulative_rewards = {}
|
|
self.episode_steps = {}
|
|
self.stats = {'losses': [], 'episode_length': [], 'cumulative_reward': []}
|
|
|
|
self.training_buffer = Buffer()
|
|
self.summary_path = trainer_parameters['summary_path']
|
|
if not os.path.exists(self.summary_path):
|
|
os.makedirs(self.summary_path)
|
|
|
|
self.summary_writer = tf.summary.FileWriter(self.summary_path)
|
|
|
|
def __str__(self):
|
|
return '''Hyperparameters for the Imitation Trainer of brain {0}: \n{1}'''.format(
|
|
self.brain_name, '\n'.join(['\t{0}:\t{1}'.format(x, self.trainer_parameters[x]) for x in self.param_keys]))
|
|
|
|
@property
|
|
def parameters(self):
|
|
"""
|
|
Returns the trainer parameters of the trainer.
|
|
"""
|
|
return self.trainer_parameters
|
|
|
|
@property
|
|
def get_max_steps(self):
|
|
"""
|
|
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
|
|
:return: The maximum number of steps of the trainer
|
|
"""
|
|
return float(self.trainer_parameters['max_steps'])
|
|
|
|
@property
|
|
def get_step(self):
|
|
"""
|
|
Returns the number of steps the trainer has performed
|
|
:return: the step count of the trainer
|
|
"""
|
|
return self.policy.get_current_step()
|
|
|
|
@property
|
|
def get_last_reward(self):
|
|
"""
|
|
Returns the last reward the trainer has had
|
|
:return: the new last reward
|
|
"""
|
|
if len(self.stats['cumulative_reward']) > 0:
|
|
return np.mean(self.stats['cumulative_reward'])
|
|
else:
|
|
return 0
|
|
|
|
def increment_step_and_update_last_reward(self):
|
|
"""
|
|
Increment the step count of the trainer and Updates the last reward
|
|
"""
|
|
self.policy.increment_step()
|
|
return
|
|
|
|
def take_action(self, all_brain_info: AllBrainInfo):
|
|
"""
|
|
Decides actions using policy given current brain info.
|
|
:param all_brain_info: AllBrainInfo from environment.
|
|
:return: a tuple containing action, memories, values and an object
|
|
to be passed to add experiences
|
|
"""
|
|
if len(all_brain_info[self.brain_name].agents) == 0:
|
|
return [], [], [], None, None
|
|
|
|
agent_brain = all_brain_info[self.brain_name]
|
|
run_out = self.policy.evaluate(agent_brain)
|
|
if self.policy.use_recurrent:
|
|
return run_out['action'], run_out['memory_out'], None, None, None
|
|
else:
|
|
return run_out['action'], None, None, None, None
|
|
|
|
def add_experiences(self, curr_info: AllBrainInfo, next_info: AllBrainInfo, take_action_outputs):
|
|
"""
|
|
Adds experiences to each agent's experience history.
|
|
:param curr_info: Current AllBrainInfo (Dictionary of all current brains and corresponding BrainInfo).
|
|
:param next_info: Next AllBrainInfo (Dictionary of all current brains and corresponding BrainInfo).
|
|
:param take_action_outputs: The outputs of the take action method.
|
|
"""
|
|
|
|
# Used to collect teacher experience into training buffer
|
|
info_teacher = curr_info[self.brain_to_imitate]
|
|
next_info_teacher = next_info[self.brain_to_imitate]
|
|
for agent_id in info_teacher.agents:
|
|
self.training_buffer[agent_id].last_brain_info = info_teacher
|
|
|
|
for agent_id in next_info_teacher.agents:
|
|
stored_info_teacher = self.training_buffer[agent_id].last_brain_info
|
|
if stored_info_teacher is None:
|
|
continue
|
|
else:
|
|
idx = stored_info_teacher.agents.index(agent_id)
|
|
next_idx = next_info_teacher.agents.index(agent_id)
|
|
if stored_info_teacher.text_observations[idx] != "":
|
|
info_teacher_record, info_teacher_reset = \
|
|
stored_info_teacher.text_observations[idx].lower().split(",")
|
|
next_info_teacher_record, next_info_teacher_reset = next_info_teacher.text_observations[idx].\
|
|
lower().split(",")
|
|
if next_info_teacher_reset == "true":
|
|
self.training_buffer.reset_update_buffer()
|
|
else:
|
|
info_teacher_record, next_info_teacher_record = "true", "true"
|
|
if info_teacher_record == "true" and next_info_teacher_record == "true":
|
|
if not stored_info_teacher.local_done[idx]:
|
|
for i in range(self.policy.vis_obs_size):
|
|
self.training_buffer[agent_id]['visual_obs%d' % i]\
|
|
.append(stored_info_teacher.visual_observations[i][idx])
|
|
if self.policy.use_vec_obs:
|
|
self.training_buffer[agent_id]['vector_obs']\
|
|
.append(stored_info_teacher.vector_observations[idx])
|
|
if self.policy.use_recurrent:
|
|
if stored_info_teacher.memories.shape[1] == 0:
|
|
stored_info_teacher.memories = np.zeros((len(stored_info_teacher.agents),
|
|
self.policy.m_size))
|
|
self.training_buffer[agent_id]['memory'].append(stored_info_teacher.memories[idx])
|
|
self.training_buffer[agent_id]['actions'].append(next_info_teacher.
|
|
previous_vector_actions[next_idx])
|
|
info_student = curr_info[self.brain_name]
|
|
next_info_student = next_info[self.brain_name]
|
|
for agent_id in info_student.agents:
|
|
self.training_buffer[agent_id].last_brain_info = info_student
|
|
|
|
# Used to collect information about student performance.
|
|
for agent_id in next_info_student.agents:
|
|
stored_info_student = self.training_buffer[agent_id].last_brain_info
|
|
if stored_info_student is None:
|
|
continue
|
|
else:
|
|
next_idx = next_info_student.agents.index(agent_id)
|
|
if agent_id not in self.cumulative_rewards:
|
|
self.cumulative_rewards[agent_id] = 0
|
|
self.cumulative_rewards[agent_id] += next_info_student.rewards[next_idx]
|
|
if not next_info_student.local_done[next_idx]:
|
|
if agent_id not in self.episode_steps:
|
|
self.episode_steps[agent_id] = 0
|
|
self.episode_steps[agent_id] += 1
|
|
|
|
def process_experiences(self, current_info: AllBrainInfo, next_info: AllBrainInfo):
|
|
"""
|
|
Checks agent histories for processing condition, and processes them as necessary.
|
|
Processing involves calculating value and advantage targets for model updating step.
|
|
:param current_info: Current AllBrainInfo
|
|
:param next_info: Next AllBrainInfo
|
|
"""
|
|
info_teacher = next_info[self.brain_to_imitate]
|
|
for l in range(len(info_teacher.agents)):
|
|
teacher_action_list = len(self.training_buffer[info_teacher.agents[l]]['actions'])
|
|
horizon_reached = teacher_action_list > self.trainer_parameters['time_horizon']
|
|
teacher_filled = len(self.training_buffer[info_teacher.agents[l]]['actions']) > 0
|
|
if ((info_teacher.local_done[l] or horizon_reached) and teacher_filled):
|
|
agent_id = info_teacher.agents[l]
|
|
self.training_buffer.append_update_buffer(
|
|
agent_id, batch_size=None, training_length=self.policy.sequence_length)
|
|
self.training_buffer[agent_id].reset_agent()
|
|
|
|
info_student = next_info[self.brain_name]
|
|
for l in range(len(info_student.agents)):
|
|
if info_student.local_done[l]:
|
|
agent_id = info_student.agents[l]
|
|
self.stats['cumulative_reward'].append(
|
|
self.cumulative_rewards.get(agent_id, 0))
|
|
self.stats['episode_length'].append(
|
|
self.episode_steps.get(agent_id, 0))
|
|
self.cumulative_rewards[agent_id] = 0
|
|
self.episode_steps[agent_id] = 0
|
|
|
|
def end_episode(self):
|
|
"""
|
|
A signal that the Episode has ended. The buffer must be reset.
|
|
Get only called when the academy resets.
|
|
"""
|
|
self.training_buffer.reset_all()
|
|
for agent_id in self.cumulative_rewards:
|
|
self.cumulative_rewards[agent_id] = 0
|
|
for agent_id in self.episode_steps:
|
|
self.episode_steps[agent_id] = 0
|
|
|
|
def is_ready_update(self):
|
|
"""
|
|
Returns whether or not the trainer has enough elements to run update model
|
|
:return: A boolean corresponding to whether or not update_model() can be run
|
|
"""
|
|
return len(self.training_buffer.update_buffer['actions']) > self.n_sequences
|
|
|
|
def update_policy(self):
|
|
"""
|
|
Updates the policy.
|
|
"""
|
|
self.training_buffer.update_buffer.shuffle()
|
|
batch_losses = []
|
|
num_batches = min(len(self.training_buffer.update_buffer['actions']) //
|
|
self.n_sequences, self.batches_per_epoch)
|
|
for i in range(num_batches):
|
|
buffer = self.training_buffer.update_buffer
|
|
start = i * self.n_sequences
|
|
end = (i + 1) * self.n_sequences
|
|
mini_batch = buffer.make_mini_batch(start, end)
|
|
run_out = self.policy.update(mini_batch, self.n_sequences)
|
|
loss = run_out['policy_loss']
|
|
batch_losses.append(loss)
|
|
if len(batch_losses) > 0:
|
|
self.stats['losses'].append(np.mean(batch_losses))
|
|
else:
|
|
self.stats['losses'].append(0)
|