Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

300 行
12 KiB

from typing import List, Optional, Tuple
from mlagents.torch_utils import torch, nn
import numpy as np
from mlagents.trainers.torch.encoders import (
SimpleVisualEncoder,
ResNetVisualEncoder,
NatureVisualEncoder,
VectorInput,
)
from mlagents.trainers.settings import EncoderType, ScheduleType
from mlagents.trainers.exception import UnityTrainerException
from mlagents_envs.base_env import BehaviorSpec
from mlagents.trainers.torch.distributions import DistInstance, DiscreteDistInstance
class ModelUtils:
# Minimum supported side for each encoder type. If refactoring an encoder, please
# adjust these also.
MIN_RESOLUTION_FOR_ENCODER = {
EncoderType.SIMPLE: 20,
EncoderType.NATURE_CNN: 36,
EncoderType.RESNET: 15,
}
class ActionFlattener:
def __init__(self, behavior_spec: BehaviorSpec):
self._specs = behavior_spec
@property
def flattened_size(self) -> int:
if self._specs.is_action_continuous():
return self._specs.action_size
else:
return sum(self._specs.discrete_action_branches)
def forward(self, action: torch.Tensor) -> torch.Tensor:
if self._specs.is_action_continuous():
return action
else:
return torch.cat(
ModelUtils.actions_to_onehot(
torch.as_tensor(action, dtype=torch.long),
self._specs.discrete_action_branches,
),
dim=1,
)
@staticmethod
def update_learning_rate(optim: torch.optim.Optimizer, lr: float) -> None:
"""
Apply a learning rate to a torch optimizer.
:param optim: Optimizer
:param lr: Learning rate
"""
for param_group in optim.param_groups:
param_group["lr"] = lr
class DecayedValue:
def __init__(
self,
schedule: ScheduleType,
initial_value: float,
min_value: float,
max_step: int,
):
"""
Object that represnets value of a parameter that should be decayed, assuming it is a function of
global_step.
:param schedule: Type of learning rate schedule.
:param initial_value: Initial value before decay.
:param min_value: Decay value to this value by max_step.
:param max_step: The final step count where the return value should equal min_value.
:param global_step: The current step count.
:return: The value.
"""
self.schedule = schedule
self.initial_value = initial_value
self.min_value = min_value
self.max_step = max_step
def get_value(self, global_step: int) -> float:
"""
Get the value at a given global step.
:param global_step: Step count.
:returns: Decayed value at this global step.
"""
if self.schedule == ScheduleType.CONSTANT:
return self.initial_value
elif self.schedule == ScheduleType.LINEAR:
return ModelUtils.polynomial_decay(
self.initial_value, self.min_value, self.max_step, global_step
)
else:
raise UnityTrainerException(f"The schedule {self.schedule} is invalid.")
@staticmethod
def polynomial_decay(
initial_value: float,
min_value: float,
max_step: int,
global_step: int,
power: float = 1.0,
) -> float:
"""
Get a decayed value based on a polynomial schedule, with respect to the current global step.
:param initial_value: Initial value before decay.
:param min_value: Decay value to this value by max_step.
:param max_step: The final step count where the return value should equal min_value.
:param global_step: The current step count.
:param power: Power of polynomial decay. 1.0 (default) is a linear decay.
:return: The current decayed value.
"""
global_step = min(global_step, max_step)
decayed_value = (initial_value - min_value) * (
1 - float(global_step) / max_step
) ** (power) + min_value
return decayed_value
@staticmethod
def get_encoder_for_type(encoder_type: EncoderType) -> nn.Module:
ENCODER_FUNCTION_BY_TYPE = {
EncoderType.SIMPLE: SimpleVisualEncoder,
EncoderType.NATURE_CNN: NatureVisualEncoder,
EncoderType.RESNET: ResNetVisualEncoder,
}
return ENCODER_FUNCTION_BY_TYPE.get(encoder_type)
@staticmethod
def _check_resolution_for_encoder(
height: int, width: int, vis_encoder_type: EncoderType
) -> None:
min_res = ModelUtils.MIN_RESOLUTION_FOR_ENCODER[vis_encoder_type]
if height < min_res or width < min_res:
raise UnityTrainerException(
f"Visual observation resolution ({width}x{height}) is too small for"
f"the provided EncoderType ({vis_encoder_type.value}). The min dimension is {min_res}"
)
@staticmethod
def create_input_processors(
observation_shapes: List[Tuple[int, ...]],
h_size: int,
vis_encode_type: EncoderType,
normalize: bool = False,
) -> Tuple[nn.ModuleList, nn.ModuleList, int]:
"""
Creates visual and vector encoders, along with their normalizers.
:param observation_shapes: List of Tuples that represent the action dimensions.
:param action_size: Number of additional un-normalized inputs to each vector encoder. Used for
conditioining network on other values (e.g. actions for a Q function)
:param h_size: Number of hidden units per layer.
:param vis_encode_type: Type of visual encoder to use.
:param unnormalized_inputs: Vector inputs that should not be normalized, and added to the vector
obs.
:param normalize: Normalize all vector inputs.
:return: Tuple of visual encoders and vector encoders each as a list.
"""
visual_encoders: List[nn.Module] = []
vector_encoders: List[nn.Module] = []
visual_encoder_class = ModelUtils.get_encoder_for_type(vis_encode_type)
vector_size = 0
visual_output_size = 0
for i, dimension in enumerate(observation_shapes):
if len(dimension) == 3:
ModelUtils._check_resolution_for_encoder(
dimension[0], dimension[1], vis_encode_type
)
visual_encoders.append(
visual_encoder_class(
dimension[0], dimension[1], dimension[2], h_size
)
)
visual_output_size += h_size
elif len(dimension) == 1:
vector_size += dimension[0]
else:
raise UnityTrainerException(
f"Unsupported shape of {dimension} for observation {i}"
)
if vector_size > 0:
vector_encoders.append(VectorInput(vector_size, normalize))
# Total output size for all inputs + CNNs
total_processed_size = vector_size + visual_output_size
return (
nn.ModuleList(visual_encoders),
nn.ModuleList(vector_encoders),
total_processed_size,
)
@staticmethod
def list_to_tensor(
ndarray_list: List[np.ndarray], dtype: Optional[torch.dtype] = None
) -> torch.Tensor:
"""
Converts a list of numpy arrays into a tensor. MUCH faster than
calling as_tensor on the list directly.
"""
return torch.as_tensor(np.asanyarray(ndarray_list), dtype=dtype)
@staticmethod
def to_numpy(tensor: torch.Tensor) -> np.ndarray:
"""
Converts a Torch Tensor to a numpy array. If the Tensor is on the GPU, it will
be brought to the CPU.
"""
return tensor.detach().cpu().numpy()
@staticmethod
def break_into_branches(
concatenated_logits: torch.Tensor, action_size: List[int]
) -> List[torch.Tensor]:
"""
Takes a concatenated set of logits that represent multiple discrete action branches
and breaks it up into one Tensor per branch.
:param concatenated_logits: Tensor that represents the concatenated action branches
:param action_size: List of ints containing the number of possible actions for each branch.
:return: A List of Tensors containing one tensor per branch.
"""
action_idx = [0] + list(np.cumsum(action_size))
branched_logits = [
concatenated_logits[:, action_idx[i] : action_idx[i + 1]]
for i in range(len(action_size))
]
return branched_logits
@staticmethod
def actions_to_onehot(
discrete_actions: torch.Tensor, action_size: List[int]
) -> List[torch.Tensor]:
"""
Takes a tensor of discrete actions and turns it into a List of onehot encoding for each
action.
:param discrete_actions: Actions in integer form.
:param action_size: List of branch sizes. Should be of same size as discrete_actions'
last dimension.
:return: List of one-hot tensors, one representing each branch.
"""
onehot_branches = [
torch.nn.functional.one_hot(_act.T, action_size[i]).float()
for i, _act in enumerate(discrete_actions.long().T)
]
return onehot_branches
@staticmethod
def dynamic_partition(
data: torch.Tensor, partitions: torch.Tensor, num_partitions: int
) -> List[torch.Tensor]:
"""
Torch implementation of dynamic_partition :
https://www.tensorflow.org/api_docs/python/tf/dynamic_partition
Splits the data Tensor input into num_partitions Tensors according to the indices in
partitions.
:param data: The Tensor data that will be split into partitions.
:param partitions: An indices tensor that determines in which partition each element
of data will be in.
:param num_partitions: The number of partitions to output. Corresponds to the
maximum possible index in the partitions argument.
:return: A list of Tensor partitions (Their indices correspond to their partition index).
"""
res: List[torch.Tensor] = []
for i in range(num_partitions):
res += [data[(partitions == i).nonzero().squeeze(1)]]
return res
@staticmethod
def get_probs_and_entropy(
action_list: List[torch.Tensor], dists: List[DistInstance]
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
log_probs_list = []
all_probs_list = []
entropies_list = []
for action, action_dist in zip(action_list, dists):
log_prob = action_dist.log_prob(action)
log_probs_list.append(log_prob)
entropies_list.append(action_dist.entropy())
if isinstance(action_dist, DiscreteDistInstance):
all_probs_list.append(action_dist.all_log_prob())
log_probs = torch.stack(log_probs_list, dim=-1)
entropies = torch.stack(entropies_list, dim=-1)
if not all_probs_list:
log_probs = log_probs.squeeze(-1)
entropies = entropies.squeeze(-1)
all_probs = None
else:
all_probs = torch.cat(all_probs_list, dim=-1)
return log_probs, entropies, all_probs
@staticmethod
def masked_mean(tensor: torch.Tensor, masks: torch.Tensor) -> torch.Tensor:
"""
Returns the mean of the tensor but ignoring the values specified by masks.
Used for masking out loss functions.
:param tensor: Tensor which needs mean computation.
:param masks: Boolean tensor of masks with same dimension as tensor.
"""
return (tensor.T * masks).sum() / torch.clamp(
(torch.ones_like(tensor.T) * masks).float().sum(), min=1.0
)