您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
333 行
16 KiB
333 行
16 KiB
# # Unity ML Agents
|
|
# ## ML-Agent Learning (Imitation)
|
|
# Contains an implementation of Behavioral Cloning Algorithm
|
|
|
|
import logging
|
|
import os
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from unityagents import AllBrainInfo
|
|
from unitytrainers.bc.models import BehavioralCloningModel
|
|
from unitytrainers.buffer import Buffer
|
|
from unitytrainers.trainer import UnityTrainerException, Trainer
|
|
|
|
logger = logging.getLogger("unityagents")
|
|
|
|
|
|
class BehavioralCloningTrainer(Trainer):
|
|
"""The ImitationTrainer is an implementation of the imitation learning."""
|
|
|
|
def __init__(self, sess, env, brain_name, trainer_parameters, training, seed):
|
|
"""
|
|
Responsible for collecting experiences and training PPO model.
|
|
:param sess: Tensorflow session.
|
|
:param env: The UnityEnvironment.
|
|
:param trainer_parameters: The parameters for the trainer (dictionary).
|
|
:param training: Whether the trainer is set for training.
|
|
"""
|
|
self.param_keys = ['brain_to_imitate', 'batch_size', 'time_horizon', 'graph_scope',
|
|
'summary_freq', 'max_steps', 'batches_per_epoch', 'use_recurrent', 'hidden_units',
|
|
'num_layers', 'sequence_length', 'memory_size']
|
|
|
|
for k in self.param_keys:
|
|
if k not in trainer_parameters:
|
|
raise UnityTrainerException("The hyperparameter {0} could not be found for the Imitation trainer of "
|
|
"brain {1}.".format(k, brain_name))
|
|
|
|
super(BehavioralCloningTrainer, self).__init__(sess, env, brain_name, trainer_parameters, training)
|
|
|
|
self.variable_scope = trainer_parameters['graph_scope']
|
|
self.brain_to_imitate = trainer_parameters['brain_to_imitate']
|
|
self.batches_per_epoch = trainer_parameters['batches_per_epoch']
|
|
self.use_recurrent = trainer_parameters['use_recurrent']
|
|
self.step = 0
|
|
self.sequence_length = 1
|
|
self.m_size = None
|
|
if self.use_recurrent:
|
|
self.m_size = trainer_parameters["memory_size"]
|
|
self.sequence_length = trainer_parameters["sequence_length"]
|
|
self.n_sequences = max(int(trainer_parameters['batch_size'] / self.sequence_length), 1)
|
|
self.cumulative_rewards = {}
|
|
self.episode_steps = {}
|
|
self.stats = {'losses': [], 'episode_length': [], 'cumulative_reward': []}
|
|
|
|
self.training_buffer = Buffer()
|
|
self.is_continuous = (env.brains[brain_name].vector_action_space_type == "continuous")
|
|
self.use_observations = (env.brains[brain_name].number_visual_observations > 0)
|
|
if self.use_observations:
|
|
logger.info('Cannot use observations with imitation learning')
|
|
self.use_states = (env.brains[brain_name].vector_observation_space_size > 0)
|
|
self.summary_path = trainer_parameters['summary_path']
|
|
if not os.path.exists(self.summary_path):
|
|
os.makedirs(self.summary_path)
|
|
|
|
self.summary_writer = tf.summary.FileWriter(self.summary_path)
|
|
with tf.variable_scope(self.variable_scope):
|
|
tf.set_random_seed(seed)
|
|
self.model = BehavioralCloningModel(
|
|
h_size=int(trainer_parameters['hidden_units']),
|
|
lr=float(trainer_parameters['learning_rate']),
|
|
n_layers=int(trainer_parameters['num_layers']),
|
|
m_size=self.m_size,
|
|
normalize=False,
|
|
use_recurrent=trainer_parameters['use_recurrent'],
|
|
brain=self.brain)
|
|
|
|
def __str__(self):
|
|
|
|
return '''Hyperparameters for the Imitation Trainer of brain {0}: \n{1}'''.format(
|
|
self.brain_name, '\n'.join(['\t{0}:\t{1}'.format(x, self.trainer_parameters[x]) for x in self.param_keys]))
|
|
|
|
@property
|
|
def parameters(self):
|
|
"""
|
|
Returns the trainer parameters of the trainer.
|
|
"""
|
|
return self.trainer_parameters
|
|
|
|
@property
|
|
def graph_scope(self):
|
|
"""
|
|
Returns the graph scope of the trainer.
|
|
"""
|
|
return self.variable_scope
|
|
|
|
@property
|
|
def get_max_steps(self):
|
|
"""
|
|
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
|
|
:return: The maximum number of steps of the trainer
|
|
"""
|
|
return float(self.trainer_parameters['max_steps'])
|
|
|
|
@property
|
|
def get_step(self):
|
|
"""
|
|
Returns the number of steps the trainer has performed
|
|
:return: the step count of the trainer
|
|
"""
|
|
return self.step
|
|
|
|
@property
|
|
def get_last_reward(self):
|
|
"""
|
|
Returns the last reward the trainer has had
|
|
:return: the new last reward
|
|
"""
|
|
if len(self.stats['cumulative_reward']) > 0:
|
|
return np.mean(self.stats['cumulative_reward'])
|
|
else:
|
|
return 0
|
|
|
|
def increment_step(self):
|
|
"""
|
|
Increment the step count of the trainer
|
|
"""
|
|
self.step += 1
|
|
|
|
def update_last_reward(self):
|
|
"""
|
|
Updates the last reward
|
|
"""
|
|
return
|
|
|
|
def take_action(self, all_brain_info: AllBrainInfo):
|
|
"""
|
|
Decides actions given state/observation information, and takes them in environment.
|
|
:param all_brain_info: AllBrainInfo from environment.
|
|
:return: a tuple containing action, memories, values and an object
|
|
to be passed to add experiences
|
|
"""
|
|
if len(all_brain_info[self.brain_name].agents) == 0:
|
|
return [], [], [], None
|
|
|
|
agent_brain = all_brain_info[self.brain_name]
|
|
feed_dict = {self.model.dropout_rate: 1.0, self.model.sequence_length: 1}
|
|
run_list = [self.model.sample_action]
|
|
if self.use_observations:
|
|
for i, _ in enumerate(agent_brain.visual_observations):
|
|
feed_dict[self.model.visual_in[i]] = agent_brain.visual_observations[i]
|
|
if self.use_states:
|
|
feed_dict[self.model.vector_in] = agent_brain.vector_observations
|
|
if self.use_recurrent:
|
|
if agent_brain.memories.shape[1] == 0:
|
|
agent_brain.memories = np.zeros((len(agent_brain.agents), self.m_size))
|
|
feed_dict[self.model.memory_in] = agent_brain.memories
|
|
run_list += [self.model.memory_out]
|
|
if self.use_recurrent:
|
|
agent_action, memories = self.sess.run(run_list, feed_dict)
|
|
return agent_action, memories, None, None
|
|
else:
|
|
agent_action = self.sess.run(run_list, feed_dict)
|
|
return agent_action, None, None, None
|
|
|
|
def add_experiences(self, curr_info: AllBrainInfo, next_info: AllBrainInfo, take_action_outputs):
|
|
"""
|
|
Adds experiences to each agent's experience history.
|
|
:param curr_info: Current AllBrainInfo (Dictionary of all current brains and corresponding BrainInfo).
|
|
:param next_info: Next AllBrainInfo (Dictionary of all current brains and corresponding BrainInfo).
|
|
:param take_action_outputs: The outputs of the take action method.
|
|
"""
|
|
|
|
# Used to collect teacher experience into training buffer
|
|
info_teacher = curr_info[self.brain_to_imitate]
|
|
next_info_teacher = next_info[self.brain_to_imitate]
|
|
for agent_id in info_teacher.agents:
|
|
self.training_buffer[agent_id].last_brain_info = info_teacher
|
|
|
|
for agent_id in next_info_teacher.agents:
|
|
stored_info_teacher = self.training_buffer[agent_id].last_brain_info
|
|
if stored_info_teacher is None:
|
|
continue
|
|
else:
|
|
idx = stored_info_teacher.agents.index(agent_id)
|
|
next_idx = next_info_teacher.agents.index(agent_id)
|
|
if info_teacher.text_observations[idx] != "":
|
|
info_teacher_record, info_teacher_reset = info_teacher.text_observations[idx].lower().split(",")
|
|
next_info_teacher_record, next_info_teacher_reset = next_info_teacher.text_observations[idx].\
|
|
lower().split(",")
|
|
if next_info_teacher_reset == "true":
|
|
self.training_buffer.reset_update_buffer()
|
|
else:
|
|
info_teacher_record, next_info_teacher_record = "true", "true"
|
|
if info_teacher_record == "true" and next_info_teacher_record == "true":
|
|
if not stored_info_teacher.local_done[idx]:
|
|
if self.use_observations:
|
|
for i, _ in enumerate(stored_info_teacher.visual_observations):
|
|
self.training_buffer[agent_id]['visual_observations%d' % i]\
|
|
.append(stored_info_teacher.visual_observations[i][idx])
|
|
if self.use_states:
|
|
self.training_buffer[agent_id]['vector_observations']\
|
|
.append(stored_info_teacher.vector_observations[idx])
|
|
if self.use_recurrent:
|
|
if stored_info_teacher.memories.shape[1] == 0:
|
|
stored_info_teacher.memories = np.zeros((len(stored_info_teacher.agents), self.m_size))
|
|
self.training_buffer[agent_id]['memory'].append(stored_info_teacher.memories[idx])
|
|
self.training_buffer[agent_id]['actions'].append(next_info_teacher.
|
|
previous_vector_actions[next_idx])
|
|
info_student = curr_info[self.brain_name]
|
|
next_info_student = next_info[self.brain_name]
|
|
for agent_id in info_student.agents:
|
|
self.training_buffer[agent_id].last_brain_info = info_student
|
|
|
|
# Used to collect information about student performance.
|
|
for agent_id in next_info_student.agents:
|
|
stored_info_student = self.training_buffer[agent_id].last_brain_info
|
|
if stored_info_student is None:
|
|
continue
|
|
else:
|
|
idx = stored_info_student.agents.index(agent_id)
|
|
next_idx = next_info_student.agents.index(agent_id)
|
|
if not stored_info_student.local_done[idx]:
|
|
if agent_id not in self.cumulative_rewards:
|
|
self.cumulative_rewards[agent_id] = 0
|
|
self.cumulative_rewards[agent_id] += next_info_student.rewards[next_idx]
|
|
if agent_id not in self.episode_steps:
|
|
self.episode_steps[agent_id] = 0
|
|
self.episode_steps[agent_id] += 1
|
|
|
|
def process_experiences(self, info: AllBrainInfo):
|
|
"""
|
|
Checks agent histories for processing condition, and processes them as necessary.
|
|
Processing involves calculating value and advantage targets for model updating step.
|
|
:param info: Current AllBrainInfo
|
|
"""
|
|
info_teacher = info[self.brain_to_imitate]
|
|
for l in range(len(info_teacher.agents)):
|
|
if ((info_teacher.local_done[l] or
|
|
len(self.training_buffer[info_teacher.agents[l]]['actions']) > self.trainer_parameters[
|
|
'time_horizon'])
|
|
and len(self.training_buffer[info_teacher.agents[l]]['actions']) > 0):
|
|
agent_id = info_teacher.agents[l]
|
|
self.training_buffer.append_update_buffer(agent_id, batch_size=None,
|
|
training_length=self.sequence_length)
|
|
self.training_buffer[agent_id].reset_agent()
|
|
|
|
info_student = info[self.brain_name]
|
|
for l in range(len(info_student.agents)):
|
|
if info_student.local_done[l]:
|
|
agent_id = info_student.agents[l]
|
|
self.stats['cumulative_reward'].append(self.cumulative_rewards[agent_id])
|
|
self.stats['episode_length'].append(self.episode_steps[agent_id])
|
|
self.cumulative_rewards[agent_id] = 0
|
|
self.episode_steps[agent_id] = 0
|
|
|
|
def end_episode(self):
|
|
"""
|
|
A signal that the Episode has ended. The buffer must be reset.
|
|
Get only called when the academy resets.
|
|
"""
|
|
self.training_buffer.reset_all()
|
|
for agent_id in self.cumulative_rewards:
|
|
self.cumulative_rewards[agent_id] = 0
|
|
for agent_id in self.episode_steps:
|
|
self.episode_steps[agent_id] = 0
|
|
|
|
def is_ready_update(self):
|
|
"""
|
|
Returns whether or not the trainer has enough elements to run update model
|
|
:return: A boolean corresponding to whether or not update_model() can be run
|
|
"""
|
|
return len(self.training_buffer.update_buffer['actions']) > self.n_sequences
|
|
|
|
def update_model(self):
|
|
"""
|
|
Uses training_buffer to update model.
|
|
"""
|
|
|
|
self.training_buffer.update_buffer.shuffle()
|
|
batch_losses = []
|
|
for j in range(
|
|
min(len(self.training_buffer.update_buffer['actions']) // self.n_sequences, self.batches_per_epoch)):
|
|
_buffer = self.training_buffer.update_buffer
|
|
start = j * self.n_sequences
|
|
end = (j + 1) * self.n_sequences
|
|
batch_states = np.array(_buffer['vector_observations'][start:end])
|
|
batch_actions = np.array(_buffer['actions'][start:end])
|
|
feed_dict = {self.model.true_action: batch_actions.reshape([-1, self.brain.vector_action_space_size]),
|
|
self.model.dropout_rate: 0.5,
|
|
self.model.batch_size: self.n_sequences,
|
|
self.model.sequence_length: self.sequence_length}
|
|
if not self.is_continuous:
|
|
feed_dict[self.model.vector_in] = batch_states.reshape([-1, 1])
|
|
else:
|
|
feed_dict[self.model.vector_in] = batch_states.reshape([-1, self.brain.vector_observation_space_size *
|
|
self.brain.num_stacked_vector_observations])
|
|
if self.use_observations:
|
|
for i, _ in enumerate(self.model.visual_in):
|
|
_obs = np.array(_buffer['visual_observations%d' % i][start:end])
|
|
(_batch, _seq, _w, _h, _c) = _obs.shape
|
|
feed_dict[self.model.visual_in[i]] = _obs.reshape([-1, _w, _h, _c])
|
|
if self.use_recurrent:
|
|
feed_dict[self.model.memory_in] = np.zeros([self.n_sequences, self.m_size])
|
|
|
|
loss, _ = self.sess.run([self.model.loss, self.model.update], feed_dict=feed_dict)
|
|
batch_losses.append(loss)
|
|
if len(batch_losses) > 0:
|
|
self.stats['losses'].append(np.mean(batch_losses))
|
|
else:
|
|
self.stats['losses'].append(0)
|
|
|
|
def write_summary(self, lesson_number):
|
|
"""
|
|
Saves training statistics to Tensorboard.
|
|
:param lesson_number: The lesson the trainer is at.
|
|
"""
|
|
if (self.get_step % self.trainer_parameters['summary_freq'] == 0 and self.get_step != 0 and
|
|
self.is_training and self.get_step <= self.get_max_steps):
|
|
steps = self.get_step
|
|
if len(self.stats['cumulative_reward']) > 0:
|
|
mean_reward = np.mean(self.stats['cumulative_reward'])
|
|
logger.info("{0} : Step: {1}. Mean Reward: {2}. Std of Reward: {3}."
|
|
.format(self.brain_name, steps, mean_reward, np.std(self.stats['cumulative_reward'])))
|
|
summary = tf.Summary()
|
|
for key in self.stats:
|
|
if len(self.stats[key]) > 0:
|
|
stat_mean = float(np.mean(self.stats[key]))
|
|
summary.value.add(tag='Info/{}'.format(key), simple_value=stat_mean)
|
|
self.stats[key] = []
|
|
summary.value.add(tag='Info/Lesson', simple_value=lesson_number)
|
|
self.summary_writer.add_summary(summary, steps)
|
|
self.summary_writer.flush()
|