您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
227 行
8.1 KiB
227 行
8.1 KiB
import unittest.mock as mock
|
|
import pytest
|
|
import os
|
|
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
import yaml
|
|
|
|
from mlagents.trainers.bc.models import BehavioralCloningModel
|
|
import mlagents.trainers.tests.mock_brain as mb
|
|
from mlagents.trainers.bc.policy import BCPolicy
|
|
from mlagents.trainers.bc.offline_trainer import BCTrainer
|
|
from mlagents.envs.environment import UnityEnvironment
|
|
from mlagents.envs.mock_communicator import MockCommunicator
|
|
from mlagents.trainers.tests.mock_brain import make_brain_parameters
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
hidden_units: 32
|
|
learning_rate: 3.0e-4
|
|
num_layers: 1
|
|
use_recurrent: false
|
|
sequence_length: 32
|
|
memory_size: 32
|
|
batches_per_epoch: 100 # Force code to use all possible batches
|
|
batch_size: 32
|
|
summary_freq: 2000
|
|
max_steps: 4000
|
|
"""
|
|
)
|
|
|
|
|
|
def create_bc_trainer(dummy_config, is_discrete=False, use_recurrent=False):
|
|
mock_env = mock.Mock()
|
|
if is_discrete:
|
|
mock_brain = mb.create_mock_pushblock_brain()
|
|
mock_braininfo = mb.create_mock_braininfo(
|
|
num_agents=12, num_vector_observations=70
|
|
)
|
|
else:
|
|
mock_brain = mb.create_mock_3dball_brain()
|
|
mock_braininfo = mb.create_mock_braininfo(
|
|
num_agents=12, num_vector_observations=8
|
|
)
|
|
mb.setup_mock_unityenvironment(mock_env, mock_brain, mock_braininfo)
|
|
env = mock_env()
|
|
|
|
trainer_parameters = dummy_config
|
|
trainer_parameters["summary_path"] = "tmp"
|
|
trainer_parameters["model_path"] = "tmp"
|
|
trainer_parameters["demo_path"] = (
|
|
os.path.dirname(os.path.abspath(__file__)) + "/test.demo"
|
|
)
|
|
trainer_parameters["use_recurrent"] = use_recurrent
|
|
trainer = BCTrainer(
|
|
mock_brain, trainer_parameters, training=True, load=False, seed=0, run_id=0
|
|
)
|
|
trainer.demonstration_buffer = mb.simulate_rollout(env, trainer.policy, 100)
|
|
return trainer, env
|
|
|
|
|
|
@pytest.mark.parametrize("use_recurrent", [True, False])
|
|
def test_bc_trainer_step(dummy_config, use_recurrent):
|
|
trainer, env = create_bc_trainer(dummy_config, use_recurrent=use_recurrent)
|
|
# Test get_step
|
|
assert trainer.get_step == 0
|
|
# Test update policy
|
|
trainer.update_policy()
|
|
assert len(trainer.stats["Losses/Cloning Loss"]) > 0
|
|
# Test increment step
|
|
trainer.increment_step(1)
|
|
assert trainer.step == 1
|
|
|
|
|
|
def test_bc_trainer_add_proc_experiences(dummy_config):
|
|
trainer, env = create_bc_trainer(dummy_config)
|
|
# Test add_experiences
|
|
returned_braininfo = env.step()
|
|
brain_name = "Ball3DBrain"
|
|
trainer.add_experiences(
|
|
returned_braininfo[brain_name], returned_braininfo[brain_name], {}
|
|
) # Take action outputs is not used
|
|
for agent_id in returned_braininfo[brain_name].agents:
|
|
assert trainer.evaluation_buffer[agent_id].last_brain_info is not None
|
|
assert trainer.episode_steps[agent_id] > 0
|
|
assert trainer.cumulative_rewards[agent_id] > 0
|
|
# Test process_experiences by setting done
|
|
returned_braininfo[brain_name].local_done = 12 * [True]
|
|
trainer.process_experiences(
|
|
returned_braininfo[brain_name], returned_braininfo[brain_name]
|
|
)
|
|
for agent_id in returned_braininfo[brain_name].agents:
|
|
assert trainer.episode_steps[agent_id] == 0
|
|
assert trainer.cumulative_rewards[agent_id] == 0
|
|
|
|
|
|
def test_bc_trainer_end_episode(dummy_config):
|
|
trainer, env = create_bc_trainer(dummy_config)
|
|
returned_braininfo = env.step()
|
|
brain_name = "Ball3DBrain"
|
|
trainer.add_experiences(
|
|
returned_braininfo[brain_name], returned_braininfo[brain_name], {}
|
|
) # Take action outputs is not used
|
|
trainer.process_experiences(
|
|
returned_braininfo[brain_name], returned_braininfo[brain_name]
|
|
)
|
|
# Should set everything to 0
|
|
trainer.end_episode()
|
|
for agent_id in returned_braininfo[brain_name].agents:
|
|
assert trainer.episode_steps[agent_id] == 0
|
|
assert trainer.cumulative_rewards[agent_id] == 0
|
|
|
|
|
|
@mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator")
|
|
def test_bc_policy_evaluate(mock_communicator, mock_launcher, dummy_config):
|
|
tf.reset_default_graph()
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=0
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
brain_infos = env.reset()
|
|
brain_info = brain_infos[env.external_brain_names[0]]
|
|
|
|
trainer_parameters = dummy_config
|
|
model_path = env.external_brain_names[0]
|
|
trainer_parameters["model_path"] = model_path
|
|
trainer_parameters["keep_checkpoints"] = 3
|
|
policy = BCPolicy(
|
|
0, env.brains[env.external_brain_names[0]], trainer_parameters, False
|
|
)
|
|
run_out = policy.evaluate(brain_info)
|
|
assert run_out["action"].shape == (3, 2)
|
|
|
|
env.close()
|
|
|
|
|
|
def test_cc_bc_model():
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
model = BehavioralCloningModel(
|
|
make_brain_parameters(discrete_action=False, visual_inputs=0)
|
|
)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.sample_action, model.policy]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
# env.close()
|
|
|
|
|
|
def test_dc_bc_model():
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
model = BehavioralCloningModel(
|
|
make_brain_parameters(discrete_action=True, visual_inputs=0)
|
|
)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.sample_action, model.action_probs]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.dropout_rate: 1.0,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.action_masks: np.ones([2, 2], dtype=np.float32),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
|
|
|
|
def test_visual_dc_bc_model():
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
model = BehavioralCloningModel(
|
|
make_brain_parameters(discrete_action=True, visual_inputs=2)
|
|
)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.sample_action, model.action_probs]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.dropout_rate: 1.0,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3], dtype=np.float32),
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3], dtype=np.float32),
|
|
model.action_masks: np.ones([2, 2], dtype=np.float32),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
|
|
|
|
def test_visual_cc_bc_model():
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
model = BehavioralCloningModel(
|
|
make_brain_parameters(discrete_action=False, visual_inputs=2)
|
|
)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.sample_action, model.policy]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3], dtype=np.float32),
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3], dtype=np.float32),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|