Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

224 行
7.9 KiB

using System;
using System.Collections.Generic;
using System.Linq;
using Google.Protobuf;
using Google.Protobuf.Collections;
using MLAgents.CommunicatorObjects;
using MLAgents.Sensor;
using UnityEngine;
namespace MLAgents
{
public static class GrpcExtensions
{
/// <summary>
/// Converts a AgentInfo to a protobuf generated AgentInfoActionPairProto
/// </summary>
/// <returns>The protobuf version of the AgentInfoActionPairProto.</returns>
public static AgentInfoActionPairProto ToInfoActionPairProto(this AgentInfo ai)
{
var agentInfoProto = ai.ToAgentInfoProto();
var agentActionProto = new AgentActionProto
{
VectorActions = { ai.storedVectorActions }
};
return new AgentInfoActionPairProto
{
AgentInfo = agentInfoProto,
ActionInfo = agentActionProto
};
}
/// <summary>
/// Converts a AgentInfo to a protobuf generated AgentInfoProto
/// </summary>
/// <returns>The protobuf version of the AgentInfo.</returns>
public static AgentInfoProto ToAgentInfoProto(this AgentInfo ai)
{
var agentInfoProto = new AgentInfoProto
{
Reward = ai.reward,
MaxStepReached = ai.maxStepReached,
Done = ai.done,
Id = ai.id,
};
if (ai.actionMasks != null)
{
agentInfoProto.ActionMask.AddRange(ai.actionMasks);
}
if (ai.observations != null)
{
foreach (var obs in ai.observations)
{
agentInfoProto.Observations.Add(obs.ToProto());
}
}
return agentInfoProto;
}
/// <summary>
/// Converts a Brain into to a Protobuf BrainInfoProto so it can be sent
/// </summary>
/// <returns>The BrainInfoProto generated.</returns>
/// <param name="bp">The instance of BrainParameter to extend.</param>
/// <param name="name">The name of the brain.</param>
/// <param name="isTraining">Whether or not the Brain is training.</param>
public static BrainParametersProto ToProto(this BrainParameters bp, string name, bool isTraining)
{
var brainParametersProto = new BrainParametersProto
{
VectorActionSize = { bp.vectorActionSize },
VectorActionSpaceType =
(SpaceTypeProto)bp.vectorActionSpaceType,
BrainName = name,
IsTraining = isTraining
};
brainParametersProto.VectorActionDescriptions.AddRange(bp.vectorActionDescriptions);
return brainParametersProto;
}
/// <summary>
/// Convert metadata object to proto object.
/// </summary>
public static DemonstrationMetaProto ToProto(this DemonstrationMetaData dm)
{
var demoProto = new DemonstrationMetaProto
{
ApiVersion = DemonstrationMetaData.ApiVersion,
MeanReward = dm.meanReward,
NumberSteps = dm.numberExperiences,
NumberEpisodes = dm.numberEpisodes,
DemonstrationName = dm.demonstrationName
};
return demoProto;
}
/// <summary>
/// Initialize metadata values based on proto object.
/// </summary>
public static DemonstrationMetaData ToDemonstrationMetaData(this DemonstrationMetaProto demoProto)
{
var dm = new DemonstrationMetaData
{
numberEpisodes = demoProto.NumberEpisodes,
numberExperiences = demoProto.NumberSteps,
meanReward = demoProto.MeanReward,
demonstrationName = demoProto.DemonstrationName
};
if (demoProto.ApiVersion != DemonstrationMetaData.ApiVersion)
{
throw new Exception("API versions of demonstration are incompatible.");
}
return dm;
}
/// <summary>
/// Convert a BrainParametersProto to a BrainParameters struct.
/// </summary>
/// <param name="bpp">An instance of a brain parameters protobuf object.</param>
/// <returns>A BrainParameters struct.</returns>
public static BrainParameters ToBrainParameters(this BrainParametersProto bpp)
{
var bp = new BrainParameters
{
vectorActionSize = bpp.VectorActionSize.ToArray(),
vectorActionDescriptions = bpp.VectorActionDescriptions.ToArray(),
vectorActionSpaceType = (SpaceType)bpp.VectorActionSpaceType
};
return bp;
}
/// <summary>
/// Convert a MapField to ResetParameters.
/// </summary>
/// <param name="floatParams">The mapping of strings to floats from a protobuf MapField.</param>
/// <returns></returns>
public static ResetParameters ToResetParameters(this MapField<string, float> floatParams)
{
return new ResetParameters(floatParams);
}
/// <summary>
/// Convert an EnvironmnetParametersProto protobuf object to an EnvironmentResetParameters struct.
/// </summary>
/// <param name="epp">The instance of the EnvironmentParametersProto object.</param>
/// <returns>A new EnvironmentResetParameters struct.</returns>
public static EnvironmentResetParameters ToEnvironmentResetParameters(this EnvironmentParametersProto epp)
{
return new EnvironmentResetParameters
{
resetParameters = epp.FloatParameters?.ToResetParameters(),
customResetParameters = epp.CustomResetParameters
};
}
public static UnityRLInitParameters ToUnityRLInitParameters(this UnityRLInitializationInputProto inputProto)
{
return new UnityRLInitParameters
{
seed = inputProto.Seed
};
}
public static AgentAction ToAgentAction(this AgentActionProto aap)
{
return new AgentAction
{
vectorActions = aap.VectorActions.ToArray(),
value = aap.Value,
};
}
public static List<AgentAction> ToAgentActionList(this UnityRLInputProto.Types.ListAgentActionProto proto)
{
var agentActions = new List<AgentAction>(proto.Value.Count);
foreach (var ap in proto.Value)
{
agentActions.Add(ap.ToAgentAction());
}
return agentActions;
}
public static ObservationProto ToProto(this Observation obs)
{
ObservationProto obsProto = null;
if (obs.CompressedData != null)
{
// Make sure that uncompressed data is empty
if (obs.FloatData.Count != 0)
{
Debug.LogWarning("Observation has both compressed and uncompressed data set. Using compressed.");
}
obsProto = new ObservationProto
{
CompressedData = ByteString.CopyFrom(obs.CompressedData),
CompressionType = (CompressionTypeProto)obs.CompressionType,
};
}
else
{
var floatDataProto = new ObservationProto.Types.FloatData
{
Data = { obs.FloatData },
};
obsProto = new ObservationProto
{
FloatData = floatDataProto,
CompressionType = (CompressionTypeProto)obs.CompressionType,
};
}
obsProto.Shape.AddRange(obs.Shape);
return obsProto;
}
}
}