您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
641 行
25 KiB
641 行
25 KiB
from enum import Enum
|
|
from typing import Callable, Dict, List, Tuple, NamedTuple
|
|
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
|
|
from mlagents.trainers.exception import UnityTrainerException
|
|
from mlagents.trainers.brain import CameraResolution
|
|
|
|
ActivationFunction = Callable[[tf.Tensor], tf.Tensor]
|
|
EncoderFunction = Callable[
|
|
[tf.Tensor, int, ActivationFunction, int, str, bool], tf.Tensor
|
|
]
|
|
|
|
EPSILON = 1e-7
|
|
|
|
|
|
class EncoderType(Enum):
|
|
SIMPLE = "simple"
|
|
NATURE_CNN = "nature_cnn"
|
|
RESNET = "resnet"
|
|
|
|
|
|
class ScheduleType(Enum):
|
|
CONSTANT = "constant"
|
|
LINEAR = "linear"
|
|
|
|
|
|
class NormalizerTensors(NamedTuple):
|
|
update_op: tf.Operation
|
|
steps: tf.Tensor
|
|
running_mean: tf.Tensor
|
|
running_variance: tf.Tensor
|
|
|
|
|
|
class ModelUtils:
|
|
# Minimum supported side for each encoder type. If refactoring an encoder, please
|
|
# adjust these also.
|
|
MIN_RESOLUTION_FOR_ENCODER = {
|
|
EncoderType.SIMPLE: 20,
|
|
EncoderType.NATURE_CNN: 36,
|
|
EncoderType.RESNET: 15,
|
|
}
|
|
|
|
@staticmethod
|
|
def create_global_steps():
|
|
"""Creates TF ops to track and increment global training step."""
|
|
global_step = tf.Variable(
|
|
0, name="global_step", trainable=False, dtype=tf.int32
|
|
)
|
|
steps_to_increment = tf.placeholder(
|
|
shape=[], dtype=tf.int32, name="steps_to_increment"
|
|
)
|
|
increment_step = tf.assign(global_step, tf.add(global_step, steps_to_increment))
|
|
return global_step, increment_step, steps_to_increment
|
|
|
|
@staticmethod
|
|
def create_schedule(
|
|
schedule: ScheduleType,
|
|
parameter: float,
|
|
global_step: tf.Tensor,
|
|
max_step: int,
|
|
min_value: float,
|
|
) -> tf.Tensor:
|
|
"""
|
|
Create a learning rate tensor.
|
|
:param lr_schedule: Type of learning rate schedule.
|
|
:param lr: Base learning rate.
|
|
:param global_step: A TF Tensor representing the total global step.
|
|
:param max_step: The maximum number of steps in the training run.
|
|
:return: A Tensor containing the learning rate.
|
|
"""
|
|
if schedule == ScheduleType.CONSTANT:
|
|
parameter_rate = tf.Variable(parameter, trainable=False)
|
|
elif schedule == ScheduleType.LINEAR:
|
|
parameter_rate = tf.train.polynomial_decay(
|
|
parameter, global_step, max_step, min_value, power=1.0
|
|
)
|
|
else:
|
|
raise UnityTrainerException("The schedule {} is invalid.".format(schedule))
|
|
return parameter_rate
|
|
|
|
@staticmethod
|
|
def scaled_init(scale):
|
|
return tf.initializers.variance_scaling(scale)
|
|
|
|
@staticmethod
|
|
def swish(input_activation: tf.Tensor) -> tf.Tensor:
|
|
"""Swish activation function. For more info: https://arxiv.org/abs/1710.05941"""
|
|
return tf.multiply(input_activation, tf.nn.sigmoid(input_activation))
|
|
|
|
@staticmethod
|
|
def create_visual_input(
|
|
camera_parameters: CameraResolution, name: str
|
|
) -> tf.Tensor:
|
|
"""
|
|
Creates image input op.
|
|
:param camera_parameters: Parameters for visual observation.
|
|
:param name: Desired name of input op.
|
|
:return: input op.
|
|
"""
|
|
o_size_h = camera_parameters.height
|
|
o_size_w = camera_parameters.width
|
|
c_channels = camera_parameters.num_channels
|
|
|
|
visual_in = tf.placeholder(
|
|
shape=[None, o_size_h, o_size_w, c_channels], dtype=tf.float32, name=name
|
|
)
|
|
return visual_in
|
|
|
|
@staticmethod
|
|
def create_visual_input_placeholders(
|
|
camera_resolutions: List[CameraResolution]
|
|
) -> List[tf.Tensor]:
|
|
"""
|
|
Creates input placeholders for visual inputs.
|
|
:param camera_resolutions: A List of CameraResolutions that specify the resolutions
|
|
of the input visual observations.
|
|
:returns: A List of Tensorflow placeholders where the input iamges should be fed.
|
|
"""
|
|
visual_in: List[tf.Tensor] = []
|
|
for i, camera_resolution in enumerate(camera_resolutions):
|
|
visual_input = ModelUtils.create_visual_input(
|
|
camera_resolution, name="visual_observation_" + str(i)
|
|
)
|
|
visual_in.append(visual_input)
|
|
return visual_in
|
|
|
|
@staticmethod
|
|
def create_vector_input(
|
|
vec_obs_size: int, name: str = "vector_observation"
|
|
) -> tf.Tensor:
|
|
"""
|
|
Creates ops for vector observation input.
|
|
:param vec_obs_size: Size of stacked vector observation.
|
|
:param name: Name of the placeholder op.
|
|
:return: Placeholder for vector observations.
|
|
"""
|
|
vector_in = tf.placeholder(
|
|
shape=[None, vec_obs_size], dtype=tf.float32, name=name
|
|
)
|
|
return vector_in
|
|
|
|
@staticmethod
|
|
def normalize_vector_obs(
|
|
vector_obs: tf.Tensor,
|
|
running_mean: tf.Tensor,
|
|
running_variance: tf.Tensor,
|
|
normalization_steps: tf.Tensor,
|
|
) -> tf.Tensor:
|
|
"""
|
|
Create a normalized version of an input tensor.
|
|
:param vector_obs: Input vector observation tensor.
|
|
:param running_mean: Tensorflow tensor representing the current running mean.
|
|
:param running_variance: Tensorflow tensor representing the current running variance.
|
|
:param normalization_steps: Tensorflow tensor representing the current number of normalization_steps.
|
|
:return: A normalized version of vector_obs.
|
|
"""
|
|
normalized_state = tf.clip_by_value(
|
|
(vector_obs - running_mean)
|
|
/ tf.sqrt(
|
|
running_variance / (tf.cast(normalization_steps, tf.float32) + 1)
|
|
),
|
|
-5,
|
|
5,
|
|
name="normalized_state",
|
|
)
|
|
return normalized_state
|
|
|
|
@staticmethod
|
|
def create_normalizer(vector_obs: tf.Tensor) -> NormalizerTensors:
|
|
"""
|
|
Creates the normalizer and the variables required to store its state.
|
|
:param vector_obs: A Tensor representing the next value to normalize. When the
|
|
update operation is called, it will use vector_obs to update the running mean
|
|
and variance.
|
|
:return: A NormalizerTensors tuple that holds running mean, running variance, number of steps,
|
|
and the update operation.
|
|
"""
|
|
|
|
vec_obs_size = vector_obs.shape[1]
|
|
steps = tf.get_variable(
|
|
"normalization_steps",
|
|
[],
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
initializer=tf.zeros_initializer(),
|
|
)
|
|
running_mean = tf.get_variable(
|
|
"running_mean",
|
|
[vec_obs_size],
|
|
trainable=False,
|
|
dtype=tf.float32,
|
|
initializer=tf.zeros_initializer(),
|
|
)
|
|
running_variance = tf.get_variable(
|
|
"running_variance",
|
|
[vec_obs_size],
|
|
trainable=False,
|
|
dtype=tf.float32,
|
|
initializer=tf.ones_initializer(),
|
|
)
|
|
update_normalization = ModelUtils.create_normalizer_update(
|
|
vector_obs, steps, running_mean, running_variance
|
|
)
|
|
return NormalizerTensors(
|
|
update_normalization, steps, running_mean, running_variance
|
|
)
|
|
|
|
@staticmethod
|
|
def create_normalizer_update(
|
|
vector_input: tf.Tensor,
|
|
steps: tf.Tensor,
|
|
running_mean: tf.Tensor,
|
|
running_variance: tf.Tensor,
|
|
) -> tf.Operation:
|
|
"""
|
|
Creates the update operation for the normalizer.
|
|
:param vector_input: Vector observation to use for updating the running mean and variance.
|
|
:param running_mean: Tensorflow tensor representing the current running mean.
|
|
:param running_variance: Tensorflow tensor representing the current running variance.
|
|
:param steps: Tensorflow tensor representing the current number of steps that have been normalized.
|
|
:return: A TF operation that updates the normalization based on vector_input.
|
|
"""
|
|
# Based on Welford's algorithm for running mean and standard deviation, for batch updates. Discussion here:
|
|
# https://stackoverflow.com/questions/56402955/whats-the-formula-for-welfords-algorithm-for-variance-std-with-batch-updates
|
|
steps_increment = tf.shape(vector_input)[0]
|
|
total_new_steps = tf.add(steps, steps_increment)
|
|
|
|
# Compute the incremental update and divide by the number of new steps.
|
|
input_to_old_mean = tf.subtract(vector_input, running_mean)
|
|
new_mean = running_mean + tf.reduce_sum(
|
|
input_to_old_mean / tf.cast(total_new_steps, dtype=tf.float32), axis=0
|
|
)
|
|
# Compute difference of input to the new mean for Welford update
|
|
input_to_new_mean = tf.subtract(vector_input, new_mean)
|
|
new_variance = running_variance + tf.reduce_sum(
|
|
input_to_new_mean * input_to_old_mean, axis=0
|
|
)
|
|
update_mean = tf.assign(running_mean, new_mean)
|
|
update_variance = tf.assign(running_variance, new_variance)
|
|
update_norm_step = tf.assign(steps, total_new_steps)
|
|
return tf.group([update_mean, update_variance, update_norm_step])
|
|
|
|
@staticmethod
|
|
def create_vector_observation_encoder(
|
|
observation_input: tf.Tensor,
|
|
h_size: int,
|
|
activation: ActivationFunction,
|
|
num_layers: int,
|
|
scope: str,
|
|
reuse: bool,
|
|
) -> tf.Tensor:
|
|
"""
|
|
Builds a set of hidden state encoders.
|
|
:param reuse: Whether to re-use the weights within the same scope.
|
|
:param scope: Graph scope for the encoder ops.
|
|
:param observation_input: Input vector.
|
|
:param h_size: Hidden layer size.
|
|
:param activation: What type of activation function to use for layers.
|
|
:param num_layers: number of hidden layers to create.
|
|
:return: List of hidden layer tensors.
|
|
"""
|
|
with tf.variable_scope(scope):
|
|
hidden = observation_input
|
|
for i in range(num_layers):
|
|
hidden = tf.layers.dense(
|
|
hidden,
|
|
h_size,
|
|
activation=activation,
|
|
reuse=reuse,
|
|
name="hidden_{}".format(i),
|
|
kernel_initializer=tf.initializers.variance_scaling(1.0),
|
|
)
|
|
return hidden
|
|
|
|
@staticmethod
|
|
def create_visual_observation_encoder(
|
|
image_input: tf.Tensor,
|
|
h_size: int,
|
|
activation: ActivationFunction,
|
|
num_layers: int,
|
|
scope: str,
|
|
reuse: bool,
|
|
) -> tf.Tensor:
|
|
"""
|
|
Builds a set of resnet visual encoders.
|
|
:param image_input: The placeholder for the image input to use.
|
|
:param h_size: Hidden layer size.
|
|
:param activation: What type of activation function to use for layers.
|
|
:param num_layers: number of hidden layers to create.
|
|
:param scope: The scope of the graph within which to create the ops.
|
|
:param reuse: Whether to re-use the weights within the same scope.
|
|
:return: List of hidden layer tensors.
|
|
"""
|
|
with tf.variable_scope(scope):
|
|
conv1 = tf.layers.conv2d(
|
|
image_input,
|
|
16,
|
|
kernel_size=[8, 8],
|
|
strides=[4, 4],
|
|
activation=tf.nn.elu,
|
|
reuse=reuse,
|
|
name="conv_1",
|
|
)
|
|
conv2 = tf.layers.conv2d(
|
|
conv1,
|
|
32,
|
|
kernel_size=[4, 4],
|
|
strides=[2, 2],
|
|
activation=tf.nn.elu,
|
|
reuse=reuse,
|
|
name="conv_2",
|
|
)
|
|
hidden = tf.layers.flatten(conv2)
|
|
|
|
with tf.variable_scope(scope + "/" + "flat_encoding"):
|
|
hidden_flat = ModelUtils.create_vector_observation_encoder(
|
|
hidden, h_size, activation, num_layers, scope, reuse
|
|
)
|
|
return hidden_flat
|
|
|
|
@staticmethod
|
|
def create_nature_cnn_visual_observation_encoder(
|
|
image_input: tf.Tensor,
|
|
h_size: int,
|
|
activation: ActivationFunction,
|
|
num_layers: int,
|
|
scope: str,
|
|
reuse: bool,
|
|
) -> tf.Tensor:
|
|
"""
|
|
Builds a set of resnet visual encoders.
|
|
:param image_input: The placeholder for the image input to use.
|
|
:param h_size: Hidden layer size.
|
|
:param activation: What type of activation function to use for layers.
|
|
:param num_layers: number of hidden layers to create.
|
|
:param scope: The scope of the graph within which to create the ops.
|
|
:param reuse: Whether to re-use the weights within the same scope.
|
|
:return: List of hidden layer tensors.
|
|
"""
|
|
with tf.variable_scope(scope):
|
|
conv1 = tf.layers.conv2d(
|
|
image_input,
|
|
32,
|
|
kernel_size=[8, 8],
|
|
strides=[4, 4],
|
|
activation=tf.nn.elu,
|
|
reuse=reuse,
|
|
name="conv_1",
|
|
)
|
|
conv2 = tf.layers.conv2d(
|
|
conv1,
|
|
64,
|
|
kernel_size=[4, 4],
|
|
strides=[2, 2],
|
|
activation=tf.nn.elu,
|
|
reuse=reuse,
|
|
name="conv_2",
|
|
)
|
|
conv3 = tf.layers.conv2d(
|
|
conv2,
|
|
64,
|
|
kernel_size=[3, 3],
|
|
strides=[1, 1],
|
|
activation=tf.nn.elu,
|
|
reuse=reuse,
|
|
name="conv_3",
|
|
)
|
|
hidden = tf.layers.flatten(conv3)
|
|
|
|
with tf.variable_scope(scope + "/" + "flat_encoding"):
|
|
hidden_flat = ModelUtils.create_vector_observation_encoder(
|
|
hidden, h_size, activation, num_layers, scope, reuse
|
|
)
|
|
return hidden_flat
|
|
|
|
@staticmethod
|
|
def create_resnet_visual_observation_encoder(
|
|
image_input: tf.Tensor,
|
|
h_size: int,
|
|
activation: ActivationFunction,
|
|
num_layers: int,
|
|
scope: str,
|
|
reuse: bool,
|
|
) -> tf.Tensor:
|
|
"""
|
|
Builds a set of resnet visual encoders.
|
|
:param image_input: The placeholder for the image input to use.
|
|
:param h_size: Hidden layer size.
|
|
:param activation: What type of activation function to use for layers.
|
|
:param num_layers: number of hidden layers to create.
|
|
:param scope: The scope of the graph within which to create the ops.
|
|
:param reuse: Whether to re-use the weights within the same scope.
|
|
:return: List of hidden layer tensors.
|
|
"""
|
|
n_channels = [16, 32, 32] # channel for each stack
|
|
n_blocks = 2 # number of residual blocks
|
|
with tf.variable_scope(scope):
|
|
hidden = image_input
|
|
for i, ch in enumerate(n_channels):
|
|
hidden = tf.layers.conv2d(
|
|
hidden,
|
|
ch,
|
|
kernel_size=[3, 3],
|
|
strides=[1, 1],
|
|
reuse=reuse,
|
|
name="layer%dconv_1" % i,
|
|
)
|
|
hidden = tf.layers.max_pooling2d(
|
|
hidden, pool_size=[3, 3], strides=[2, 2], padding="same"
|
|
)
|
|
# create residual blocks
|
|
for j in range(n_blocks):
|
|
block_input = hidden
|
|
hidden = tf.nn.relu(hidden)
|
|
hidden = tf.layers.conv2d(
|
|
hidden,
|
|
ch,
|
|
kernel_size=[3, 3],
|
|
strides=[1, 1],
|
|
padding="same",
|
|
reuse=reuse,
|
|
name="layer%d_%d_conv1" % (i, j),
|
|
)
|
|
hidden = tf.nn.relu(hidden)
|
|
hidden = tf.layers.conv2d(
|
|
hidden,
|
|
ch,
|
|
kernel_size=[3, 3],
|
|
strides=[1, 1],
|
|
padding="same",
|
|
reuse=reuse,
|
|
name="layer%d_%d_conv2" % (i, j),
|
|
)
|
|
hidden = tf.add(block_input, hidden)
|
|
hidden = tf.nn.relu(hidden)
|
|
hidden = tf.layers.flatten(hidden)
|
|
|
|
with tf.variable_scope(scope + "/" + "flat_encoding"):
|
|
hidden_flat = ModelUtils.create_vector_observation_encoder(
|
|
hidden, h_size, activation, num_layers, scope, reuse
|
|
)
|
|
return hidden_flat
|
|
|
|
@staticmethod
|
|
def get_encoder_for_type(encoder_type: EncoderType) -> EncoderFunction:
|
|
ENCODER_FUNCTION_BY_TYPE = {
|
|
EncoderType.SIMPLE: ModelUtils.create_visual_observation_encoder,
|
|
EncoderType.NATURE_CNN: ModelUtils.create_nature_cnn_visual_observation_encoder,
|
|
EncoderType.RESNET: ModelUtils.create_resnet_visual_observation_encoder,
|
|
}
|
|
return ENCODER_FUNCTION_BY_TYPE.get(
|
|
encoder_type, ModelUtils.create_visual_observation_encoder
|
|
)
|
|
|
|
@staticmethod
|
|
def break_into_branches(
|
|
concatenated_logits: tf.Tensor, action_size: List[int]
|
|
) -> List[tf.Tensor]:
|
|
"""
|
|
Takes a concatenated set of logits that represent multiple discrete action branches
|
|
and breaks it up into one Tensor per branch.
|
|
:param concatenated_logits: Tensor that represents the concatenated action branches
|
|
:param action_size: List of ints containing the number of possible actions for each branch.
|
|
:return: A List of Tensors containing one tensor per branch.
|
|
"""
|
|
action_idx = [0] + list(np.cumsum(action_size))
|
|
branched_logits = [
|
|
concatenated_logits[:, action_idx[i] : action_idx[i + 1]]
|
|
for i in range(len(action_size))
|
|
]
|
|
return branched_logits
|
|
|
|
@staticmethod
|
|
def create_discrete_action_masking_layer(
|
|
branches_logits: List[tf.Tensor],
|
|
action_masks: tf.Tensor,
|
|
action_size: List[int],
|
|
) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
|
|
"""
|
|
Creates a masking layer for the discrete actions
|
|
:param branches_logits: A List of the unnormalized action probabilities for each branch
|
|
:param action_masks: The mask for the logits. Must be of dimension [None x total_number_of_action]
|
|
:param action_size: A list containing the number of possible actions for each branch
|
|
:return: The action output dimension [batch_size, num_branches], the concatenated
|
|
normalized probs (after softmax)
|
|
and the concatenated normalized log probs
|
|
"""
|
|
branch_masks = ModelUtils.break_into_branches(action_masks, action_size)
|
|
raw_probs = [
|
|
tf.multiply(tf.nn.softmax(branches_logits[k]) + EPSILON, branch_masks[k])
|
|
for k in range(len(action_size))
|
|
]
|
|
normalized_probs = [
|
|
tf.divide(raw_probs[k], tf.reduce_sum(raw_probs[k], axis=1, keepdims=True))
|
|
for k in range(len(action_size))
|
|
]
|
|
output = tf.concat(
|
|
[
|
|
tf.multinomial(tf.log(normalized_probs[k] + EPSILON), 1)
|
|
for k in range(len(action_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
return (
|
|
output,
|
|
tf.concat([normalized_probs[k] for k in range(len(action_size))], axis=1),
|
|
tf.concat(
|
|
[
|
|
tf.log(normalized_probs[k] + EPSILON)
|
|
for k in range(len(action_size))
|
|
],
|
|
axis=1,
|
|
),
|
|
)
|
|
|
|
@staticmethod
|
|
def _check_resolution_for_encoder(
|
|
vis_in: tf.Tensor, vis_encoder_type: EncoderType
|
|
) -> None:
|
|
min_res = ModelUtils.MIN_RESOLUTION_FOR_ENCODER[vis_encoder_type]
|
|
height = vis_in.shape[1]
|
|
width = vis_in.shape[2]
|
|
if height < min_res or width < min_res:
|
|
raise UnityTrainerException(
|
|
f"Visual observation resolution ({width}x{height}) is too small for"
|
|
f"the provided EncoderType ({vis_encoder_type.value}). The min dimension is {min_res}"
|
|
)
|
|
|
|
@staticmethod
|
|
def create_observation_streams(
|
|
visual_in: List[tf.Tensor],
|
|
vector_in: tf.Tensor,
|
|
num_streams: int,
|
|
h_size: int,
|
|
num_layers: int,
|
|
vis_encode_type: EncoderType = EncoderType.SIMPLE,
|
|
stream_scopes: List[str] = None,
|
|
reuse: bool = False
|
|
) -> List[tf.Tensor]:
|
|
"""
|
|
Creates encoding stream for observations.
|
|
:param num_streams: Number of streams to create.
|
|
:param h_size: Size of hidden linear layers in stream.
|
|
:param num_layers: Number of hidden linear layers in stream.
|
|
:param stream_scopes: List of strings (length == num_streams), which contains
|
|
the scopes for each of the streams. None if all under the same TF scope.
|
|
:return: List of encoded streams.
|
|
"""
|
|
activation_fn = ModelUtils.swish
|
|
vector_observation_input = vector_in
|
|
|
|
final_hiddens = []
|
|
for i in range(num_streams):
|
|
# Pick the encoder function based on the EncoderType
|
|
create_encoder_func = ModelUtils.get_encoder_for_type(vis_encode_type)
|
|
|
|
visual_encoders = []
|
|
hidden_state, hidden_visual = None, None
|
|
_scope_add = stream_scopes[i] if stream_scopes else ""
|
|
if len(visual_in) > 0:
|
|
for j, vis_in in enumerate(visual_in):
|
|
ModelUtils._check_resolution_for_encoder(vis_in, vis_encode_type)
|
|
encoded_visual = create_encoder_func(
|
|
vis_in,
|
|
h_size,
|
|
activation_fn,
|
|
num_layers,
|
|
f"{_scope_add}main_graph_{i}_encoder{j}", # scope
|
|
reuse=reuse, # reuse
|
|
)
|
|
visual_encoders.append(encoded_visual)
|
|
hidden_visual = tf.concat(visual_encoders, axis=1)
|
|
if vector_in.get_shape()[-1] > 0: # Don't encode 0-shape inputs
|
|
hidden_state = ModelUtils.create_vector_observation_encoder(
|
|
vector_observation_input,
|
|
h_size,
|
|
activation_fn,
|
|
num_layers,
|
|
scope=f"{_scope_add}main_graph_{i}",
|
|
reuse=reuse,
|
|
)
|
|
if hidden_state is not None and hidden_visual is not None:
|
|
final_hidden = tf.concat([hidden_visual, hidden_state], axis=1)
|
|
elif hidden_state is None and hidden_visual is not None:
|
|
final_hidden = hidden_visual
|
|
elif hidden_state is not None and hidden_visual is None:
|
|
final_hidden = hidden_state
|
|
else:
|
|
raise Exception(
|
|
"No valid network configuration possible. "
|
|
"There are no states or observations in this brain"
|
|
)
|
|
final_hiddens.append(final_hidden)
|
|
return final_hiddens
|
|
|
|
@staticmethod
|
|
def create_recurrent_encoder(input_state, memory_in, sequence_length, name="lstm"):
|
|
"""
|
|
Builds a recurrent encoder for either state or observations (LSTM).
|
|
:param sequence_length: Length of sequence to unroll.
|
|
:param input_state: The input tensor to the LSTM cell.
|
|
:param memory_in: The input memory to the LSTM cell.
|
|
:param name: The scope of the LSTM cell.
|
|
"""
|
|
s_size = input_state.get_shape().as_list()[1]
|
|
m_size = memory_in.get_shape().as_list()[1]
|
|
lstm_input_state = tf.reshape(input_state, shape=[-1, sequence_length, s_size])
|
|
memory_in = tf.reshape(memory_in[:, :], [-1, m_size])
|
|
half_point = int(m_size / 2)
|
|
with tf.variable_scope(name):
|
|
rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(half_point)
|
|
lstm_vector_in = tf.nn.rnn_cell.LSTMStateTuple(
|
|
memory_in[:, :half_point], memory_in[:, half_point:]
|
|
)
|
|
recurrent_output, lstm_state_out = tf.nn.dynamic_rnn(
|
|
rnn_cell, lstm_input_state, initial_state=lstm_vector_in
|
|
)
|
|
|
|
recurrent_output = tf.reshape(recurrent_output, shape=[-1, half_point])
|
|
return recurrent_output, tf.concat([lstm_state_out.c, lstm_state_out.h], axis=1)
|
|
|
|
@staticmethod
|
|
def create_value_heads(
|
|
stream_names: List[str], hidden_input: tf.Tensor
|
|
) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
|
|
"""
|
|
Creates one value estimator head for each reward signal in stream_names.
|
|
Also creates the node corresponding to the mean of all the value heads in self.value.
|
|
self.value_head is a dictionary of stream name to node containing the value estimator head for that signal.
|
|
:param stream_names: The list of reward signal names
|
|
:param hidden_input: The last layer of the Critic. The heads will consist of one dense hidden layer on top
|
|
of the hidden input.
|
|
"""
|
|
value_heads = {}
|
|
for name in stream_names:
|
|
value = tf.layers.dense(hidden_input, 1, name="{}_value".format(name))
|
|
value_heads[name] = value
|
|
value = tf.reduce_mean(list(value_heads.values()), 0)
|
|
return value_heads, value
|