您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
214 行
7.5 KiB
214 行
7.5 KiB
import attr
|
|
import pytest
|
|
|
|
from typing import Dict
|
|
|
|
from mlagents.trainers.settings import (
|
|
RunOptions,
|
|
TrainerSettings,
|
|
PPOSettings,
|
|
SACSettings,
|
|
RewardSignalType,
|
|
RewardSignalSettings,
|
|
CuriositySettings,
|
|
ParameterRandomizationSettings,
|
|
UniformSettings,
|
|
GaussianSettings,
|
|
MultiRangeUniformSettings,
|
|
TrainerType,
|
|
strict_to_cls,
|
|
)
|
|
from mlagents.trainers.exception import TrainerConfigError
|
|
|
|
|
|
def check_if_different(testobj1: object, testobj2: object) -> None:
|
|
assert testobj1 is not testobj2
|
|
if attr.has(testobj1.__class__) and attr.has(testobj2.__class__):
|
|
for key, val in attr.asdict(testobj1, recurse=False).items():
|
|
if isinstance(val, dict) or isinstance(val, list) or attr.has(val):
|
|
# Note: this check doesn't check the contents of mutables.
|
|
check_if_different(val, attr.asdict(testobj2, recurse=False)[key])
|
|
|
|
|
|
def test_is_new_instance():
|
|
"""
|
|
Verify that every instance of RunOptions() and its subclasses
|
|
is a new instance (i.e. all factory methods are used properly.)
|
|
"""
|
|
check_if_different(RunOptions(), RunOptions())
|
|
check_if_different(TrainerSettings(), TrainerSettings())
|
|
|
|
|
|
def test_no_configuration():
|
|
"""
|
|
Verify that a new config will have a PPO trainer with extrinsic rewards.
|
|
"""
|
|
blank_runoptions = RunOptions()
|
|
assert isinstance(blank_runoptions.behaviors["test"], TrainerSettings)
|
|
assert isinstance(blank_runoptions.behaviors["test"].hyperparameters, PPOSettings)
|
|
|
|
assert (
|
|
RewardSignalType.EXTRINSIC in blank_runoptions.behaviors["test"].reward_signals
|
|
)
|
|
|
|
|
|
def test_strict_to_cls():
|
|
"""
|
|
Test strict structuring method.
|
|
"""
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class TestAttrsClass:
|
|
field1: int = 0
|
|
field2: str = "test"
|
|
|
|
correct_dict = {"field1": 1, "field2": "test2"}
|
|
assert strict_to_cls(correct_dict, TestAttrsClass) == TestAttrsClass(**correct_dict)
|
|
|
|
incorrect_dict = {"field3": 1, "field2": "test2"}
|
|
|
|
with pytest.raises(TrainerConfigError):
|
|
strict_to_cls(incorrect_dict, TestAttrsClass)
|
|
|
|
with pytest.raises(TrainerConfigError):
|
|
strict_to_cls("non_dict_input", TestAttrsClass)
|
|
|
|
|
|
def test_trainersettings_structure():
|
|
"""
|
|
Test structuring method for TrainerSettings
|
|
"""
|
|
trainersettings_dict = {
|
|
"trainer_type": "sac",
|
|
"hyperparameters": {"batch_size": 1024},
|
|
"max_steps": 1.0,
|
|
"reward_signals": {"curiosity": {"encoding_size": 64}},
|
|
}
|
|
trainer_settings = TrainerSettings.structure(trainersettings_dict, TrainerSettings)
|
|
assert isinstance(trainer_settings.hyperparameters, SACSettings)
|
|
assert trainer_settings.trainer_type == TrainerType.SAC
|
|
assert isinstance(trainer_settings.max_steps, int)
|
|
assert RewardSignalType.CURIOSITY in trainer_settings.reward_signals
|
|
|
|
# Check invalid trainer type
|
|
with pytest.raises(ValueError):
|
|
trainersettings_dict = {
|
|
"trainer_type": "puppo",
|
|
"hyperparameters": {"batch_size": 1024},
|
|
"max_steps": 1.0,
|
|
}
|
|
TrainerSettings.structure(trainersettings_dict, TrainerSettings)
|
|
|
|
# Check invalid hyperparameter
|
|
with pytest.raises(TrainerConfigError):
|
|
trainersettings_dict = {
|
|
"trainer_type": "ppo",
|
|
"hyperparameters": {"notahyperparam": 1024},
|
|
"max_steps": 1.0,
|
|
}
|
|
TrainerSettings.structure(trainersettings_dict, TrainerSettings)
|
|
|
|
# Check non-dict
|
|
with pytest.raises(TrainerConfigError):
|
|
TrainerSettings.structure("notadict", TrainerSettings)
|
|
|
|
# Check hyperparameters specified but trainer type left as default.
|
|
# This shouldn't work as you could specify non-PPO hyperparameters.
|
|
with pytest.raises(TrainerConfigError):
|
|
trainersettings_dict = {"hyperparameters": {"batch_size": 1024}}
|
|
TrainerSettings.structure(trainersettings_dict, TrainerSettings)
|
|
|
|
|
|
def test_reward_signal_structure():
|
|
"""
|
|
Tests the RewardSignalSettings structure method. This one is special b/c
|
|
it takes in a Dict[RewardSignalType, RewardSignalSettings].
|
|
"""
|
|
reward_signals_dict = {
|
|
"extrinsic": {"strength": 1.0},
|
|
"curiosity": {"strength": 1.0},
|
|
}
|
|
reward_signals = RewardSignalSettings.structure(
|
|
reward_signals_dict, Dict[RewardSignalType, RewardSignalSettings]
|
|
)
|
|
assert isinstance(reward_signals[RewardSignalType.EXTRINSIC], RewardSignalSettings)
|
|
assert isinstance(reward_signals[RewardSignalType.CURIOSITY], CuriositySettings)
|
|
|
|
# Check invalid reward signal type
|
|
reward_signals_dict = {"puppo": {"strength": 1.0}}
|
|
with pytest.raises(ValueError):
|
|
RewardSignalSettings.structure(
|
|
reward_signals_dict, Dict[RewardSignalType, RewardSignalSettings]
|
|
)
|
|
|
|
# Check missing GAIL demo path
|
|
reward_signals_dict = {"gail": {"strength": 1.0}}
|
|
with pytest.raises(TypeError):
|
|
RewardSignalSettings.structure(
|
|
reward_signals_dict, Dict[RewardSignalType, RewardSignalSettings]
|
|
)
|
|
|
|
# Check non-Dict input
|
|
with pytest.raises(TrainerConfigError):
|
|
RewardSignalSettings.structure(
|
|
"notadict", Dict[RewardSignalType, RewardSignalSettings]
|
|
)
|
|
|
|
|
|
def test_parameter_randomization_structure():
|
|
"""
|
|
Tests the ParameterRandomizationSettings structure method and all validators.
|
|
"""
|
|
parameter_randomization_dict = {
|
|
"mass": {"uniform": {"min_value": 1.0, "max_value": 2.0}},
|
|
"scale": {"gaussian": {"mean": 1.0, "st_dev": 2.0}},
|
|
"length": {"multirangeuniform": {"intervals": [[1.0, 2.0], [3.0, 4.0]]}},
|
|
}
|
|
parameter_randomization_distributions = ParameterRandomizationSettings.structure(
|
|
parameter_randomization_dict, Dict[str, ParameterRandomizationSettings]
|
|
)
|
|
assert isinstance(parameter_randomization_distributions["mass"], UniformSettings)
|
|
assert isinstance(parameter_randomization_distributions["scale"], GaussianSettings)
|
|
assert isinstance(
|
|
parameter_randomization_distributions["length"], MultiRangeUniformSettings
|
|
)
|
|
|
|
# Check invalid distribution type
|
|
invalid_distribution_dict = {"mass": {"beta": {"alpha": 1.0, "beta": 2.0}}}
|
|
with pytest.raises(ValueError):
|
|
ParameterRandomizationSettings.structure(
|
|
invalid_distribution_dict, Dict[str, ParameterRandomizationSettings]
|
|
)
|
|
|
|
# Check min less than max in uniform
|
|
invalid_distribution_dict = {
|
|
"mass": {"uniform": {"min_value": 2.0, "max_value": 1.0}}
|
|
}
|
|
with pytest.raises(TrainerConfigError):
|
|
ParameterRandomizationSettings.structure(
|
|
invalid_distribution_dict, Dict[str, ParameterRandomizationSettings]
|
|
)
|
|
|
|
# Check min less than max in multirange
|
|
invalid_distribution_dict = {
|
|
"mass": {"multirangeuniform": {"intervals": [[2.0, 1.0]]}}
|
|
}
|
|
with pytest.raises(TrainerConfigError):
|
|
ParameterRandomizationSettings.structure(
|
|
invalid_distribution_dict, Dict[str, ParameterRandomizationSettings]
|
|
)
|
|
|
|
# Check multirange has valid intervals
|
|
invalid_distribution_dict = {
|
|
"mass": {"multirangeuniform": {"intervals": [[1.0, 2.0], [3.0]]}}
|
|
}
|
|
with pytest.raises(TrainerConfigError):
|
|
ParameterRandomizationSettings.structure(
|
|
invalid_distribution_dict, Dict[str, ParameterRandomizationSettings]
|
|
)
|
|
|
|
# Check non-Dict input
|
|
with pytest.raises(TrainerConfigError):
|
|
ParameterRandomizationSettings.structure(
|
|
"notadict", Dict[str, ParameterRandomizationSettings]
|
|
)
|