Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

93 行
4.0 KiB

from typing import Any, Dict
import numpy as np
from mlagents.tf_utils import tf
from mlagents.trainers.components.reward_signals import RewardSignal, RewardSignalResult
from mlagents.trainers.components.reward_signals.curiosity.model import CuriosityModel
from mlagents.trainers.policy.tf_policy import TFPolicy
from mlagents.trainers.buffer import AgentBuffer
from mlagents.trainers.settings import CuriositySettings
class CuriosityRewardSignal(RewardSignal):
def __init__(self, policy: TFPolicy, settings: CuriositySettings):
"""
Creates the Curiosity reward generator
:param policy: The Learning Policy
:param settings: CuriositySettings object that contains the parameters
(including encoding size and learning rate) for this CuriosityRewardSignal.
"""
super().__init__(policy, settings)
self.model = CuriosityModel(
policy,
encoding_size=settings.encoding_size,
learning_rate=settings.learning_rate,
)
self.use_terminal_states = False
self.update_dict = {
"curiosity_forward_loss": self.model.forward_loss,
"curiosity_inverse_loss": self.model.inverse_loss,
"curiosity_update": self.model.update_batch,
}
self.stats_name_to_update_name = {
"Losses/Curiosity Forward Loss": "curiosity_forward_loss",
"Losses/Curiosity Inverse Loss": "curiosity_inverse_loss",
}
self.has_updated = False
def evaluate_batch(self, mini_batch: AgentBuffer) -> RewardSignalResult:
feed_dict: Dict[tf.Tensor, Any] = {
self.policy.batch_size_ph: len(mini_batch["actions"]),
self.policy.sequence_length_ph: self.policy.sequence_length,
}
if self.policy.use_vec_obs:
feed_dict[self.policy.vector_in] = mini_batch["vector_obs"]
feed_dict[self.model.next_vector_in] = mini_batch["next_vector_in"]
if self.policy.vis_obs_size > 0:
for i in range(len(self.policy.visual_in)):
_obs = mini_batch["visual_obs%d" % i]
_next_obs = mini_batch["next_visual_obs%d" % i]
feed_dict[self.policy.visual_in[i]] = _obs
feed_dict[self.model.next_visual_in[i]] = _next_obs
if self.policy.use_continuous_act:
feed_dict[self.policy.selected_actions] = mini_batch["actions"]
else:
feed_dict[self.policy.output] = mini_batch["actions"]
unscaled_reward = self.policy.sess.run(
self.model.intrinsic_reward, feed_dict=feed_dict
)
scaled_reward = np.clip(
unscaled_reward * float(self.has_updated) * self.strength, 0, 1
)
return RewardSignalResult(scaled_reward, unscaled_reward)
def prepare_update(
self, policy: TFPolicy, mini_batch: AgentBuffer, num_sequences: int
) -> Dict[tf.Tensor, Any]:
"""
Prepare for update and get feed_dict.
:param num_sequences: Number of trajectories in batch.
:param mini_batch: Experience batch.
:return: Feed_dict needed for update.
"""
feed_dict = {
policy.batch_size_ph: num_sequences,
policy.sequence_length_ph: self.policy.sequence_length,
policy.mask_input: mini_batch["masks"],
}
if self.policy.use_continuous_act:
feed_dict[policy.selected_actions] = mini_batch["actions"]
else:
feed_dict[policy.output] = mini_batch["actions"]
if self.policy.use_vec_obs:
feed_dict[policy.vector_in] = mini_batch["vector_obs"]
feed_dict[self.model.next_vector_in] = mini_batch["next_vector_in"]
if policy.vis_obs_size > 0:
for i, vis_in in enumerate(policy.visual_in):
feed_dict[vis_in] = mini_batch["visual_obs%d" % i]
for i, next_vis_in in enumerate(self.model.next_visual_in):
feed_dict[next_vis_in] = mini_batch["next_visual_obs%d" % i]
self.has_updated = True
return feed_dict