Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

70 行
2.6 KiB

from mlagents.trainers.brain import BrainInfo, BrainParameters, CameraResolution
from mlagents_envs.base_env import BatchedStepResult, AgentGroupSpec
from mlagents_envs.exception import UnityEnvironmentException
import numpy as np
from typing import List
def step_result_to_brain_info(
step_result: BatchedStepResult,
group_spec: AgentGroupSpec,
agent_id_prefix: int = None,
) -> BrainInfo:
n_agents = step_result.n_agents()
vis_obs_indices = []
vec_obs_indices = []
for index, observation in enumerate(step_result.obs):
if len(observation.shape) == 2:
vec_obs_indices.append(index)
elif len(observation.shape) == 4:
vis_obs_indices.append(index)
else:
raise UnityEnvironmentException(
"Invalid input received from the environment, the observation should "
"either be a vector of float or a PNG image"
)
if len(vec_obs_indices) == 0:
vec_obs = np.zeros((n_agents, 0), dtype=np.float32)
else:
vec_obs = np.concatenate([step_result.obs[i] for i in vec_obs_indices], axis=1)
vis_obs = [step_result.obs[i] for i in vis_obs_indices]
mask = np.ones((n_agents, np.sum(group_spec.action_size)), dtype=np.float32)
if group_spec.is_action_discrete():
mask = np.ones(
(n_agents, np.sum(group_spec.discrete_action_branches)), dtype=np.float32
)
if step_result.action_mask is not None:
mask = 1 - np.concatenate(step_result.action_mask, axis=1)
if agent_id_prefix is None:
agent_ids = [str(ag_id) for ag_id in list(step_result.agent_id)]
else:
agent_ids = [f"${agent_id_prefix}-{ag_id}" for ag_id in step_result.agent_id]
return BrainInfo(
vis_obs,
vec_obs,
list(step_result.reward),
agent_ids,
list(step_result.done),
list(step_result.max_step),
mask,
)
def group_spec_to_brain_parameters(
name: str, group_spec: AgentGroupSpec
) -> BrainParameters:
vec_size = np.sum(
[shape[0] for shape in group_spec.observation_shapes if len(shape) == 1]
)
vis_sizes = [shape for shape in group_spec.observation_shapes if len(shape) == 3]
cam_res = [CameraResolution(s[0], s[1], s[2]) for s in vis_sizes]
a_size: List[int] = []
if group_spec.is_action_discrete():
a_size += list(group_spec.discrete_action_branches)
vector_action_space_type = 0
else:
a_size += [group_spec.action_size]
vector_action_space_type = 1
return BrainParameters(
name, int(vec_size), cam_res, a_size, [], vector_action_space_type
)