您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
182 行
4.8 KiB
182 行
4.8 KiB
using System;
|
|
using UnityEngine;
|
|
using System.Linq;
|
|
using MLAgents;
|
|
using UnityEngine.Serialization;
|
|
|
|
public class GridAgent : Agent
|
|
{
|
|
Academy m_Academy;
|
|
[FormerlySerializedAs("m_Area")]
|
|
[Header("Specific to GridWorld")]
|
|
public GridArea area;
|
|
public float timeBetweenDecisionsAtInference;
|
|
float m_TimeSinceDecision;
|
|
|
|
[Tooltip("Because we want an observation right before making a decision, we can force " +
|
|
"a camera to render before making a decision. Place the agentCam here if using " +
|
|
"RenderTexture as observations.")]
|
|
public Camera renderCamera;
|
|
|
|
[Tooltip("Selecting will turn on action masking. Note that a model trained with action " +
|
|
"masking turned on may not behave optimally when action masking is turned off.")]
|
|
public bool maskActions = true;
|
|
|
|
const int k_NoAction = 0; // do nothing!
|
|
const int k_Up = 1;
|
|
const int k_Down = 2;
|
|
const int k_Left = 3;
|
|
const int k_Right = 4;
|
|
|
|
public override void InitializeAgent()
|
|
{
|
|
m_Academy = FindObjectOfType<Academy>();
|
|
}
|
|
|
|
public override void CollectObservations()
|
|
{
|
|
// There are no numeric observations to collect as this environment uses visual
|
|
// observations.
|
|
|
|
// Mask the necessary actions if selected by the user.
|
|
if (maskActions)
|
|
{
|
|
SetMask();
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Applies the mask for the agents action to disallow unnecessary actions.
|
|
/// </summary>
|
|
void SetMask()
|
|
{
|
|
// Prevents the agent from picking an action that would make it collide with a wall
|
|
var positionX = (int)transform.position.x;
|
|
var positionZ = (int)transform.position.z;
|
|
var maxPosition = (int)m_Academy.FloatProperties.GetPropertyWithDefault("gridSize", 5f) - 1;
|
|
|
|
if (positionX == 0)
|
|
{
|
|
SetActionMask(k_Left);
|
|
}
|
|
|
|
if (positionX == maxPosition)
|
|
{
|
|
SetActionMask(k_Right);
|
|
}
|
|
|
|
if (positionZ == 0)
|
|
{
|
|
SetActionMask(k_Down);
|
|
}
|
|
|
|
if (positionZ == maxPosition)
|
|
{
|
|
SetActionMask(k_Up);
|
|
}
|
|
}
|
|
|
|
// to be implemented by the developer
|
|
public override void AgentAction(float[] vectorAction)
|
|
{
|
|
AddReward(-0.01f);
|
|
var action = Mathf.FloorToInt(vectorAction[0]);
|
|
|
|
var targetPos = transform.position;
|
|
switch (action)
|
|
{
|
|
case k_NoAction:
|
|
// do nothing
|
|
break;
|
|
case k_Right:
|
|
targetPos = transform.position + new Vector3(1f, 0, 0f);
|
|
break;
|
|
case k_Left:
|
|
targetPos = transform.position + new Vector3(-1f, 0, 0f);
|
|
break;
|
|
case k_Up:
|
|
targetPos = transform.position + new Vector3(0f, 0, 1f);
|
|
break;
|
|
case k_Down:
|
|
targetPos = transform.position + new Vector3(0f, 0, -1f);
|
|
break;
|
|
default:
|
|
throw new ArgumentException("Invalid action value");
|
|
}
|
|
|
|
var hit = Physics.OverlapBox(
|
|
targetPos, new Vector3(0.3f, 0.3f, 0.3f));
|
|
if (hit.Where(col => col.gameObject.CompareTag("wall")).ToArray().Length == 0)
|
|
{
|
|
transform.position = targetPos;
|
|
|
|
if (hit.Where(col => col.gameObject.CompareTag("goal")).ToArray().Length == 1)
|
|
{
|
|
Done();
|
|
SetReward(1f);
|
|
}
|
|
if (hit.Where(col => col.gameObject.CompareTag("pit")).ToArray().Length == 1)
|
|
{
|
|
Done();
|
|
SetReward(-1f);
|
|
}
|
|
}
|
|
}
|
|
|
|
public override float[] Heuristic()
|
|
{
|
|
if (Input.GetKey(KeyCode.D))
|
|
{
|
|
return new float[] { k_Right };
|
|
}
|
|
if (Input.GetKey(KeyCode.W))
|
|
{
|
|
return new float[] { k_Up };
|
|
}
|
|
if (Input.GetKey(KeyCode.A))
|
|
{
|
|
return new float[] { k_Left };
|
|
}
|
|
if (Input.GetKey(KeyCode.S))
|
|
{
|
|
return new float[] { k_Down };
|
|
}
|
|
return new float[] { k_NoAction };
|
|
}
|
|
|
|
// to be implemented by the developer
|
|
public override void AgentReset()
|
|
{
|
|
area.AreaReset();
|
|
}
|
|
|
|
public void FixedUpdate()
|
|
{
|
|
WaitTimeInference();
|
|
}
|
|
|
|
void WaitTimeInference()
|
|
{
|
|
if (renderCamera != null)
|
|
{
|
|
renderCamera.Render();
|
|
}
|
|
|
|
if (!m_Academy.IsCommunicatorOn)
|
|
{
|
|
RequestDecision();
|
|
}
|
|
else
|
|
{
|
|
if (m_TimeSinceDecision >= timeBetweenDecisionsAtInference)
|
|
{
|
|
m_TimeSinceDecision = 0f;
|
|
RequestDecision();
|
|
}
|
|
else
|
|
{
|
|
m_TimeSinceDecision += Time.fixedDeltaTime;
|
|
}
|
|
}
|
|
}
|
|
}
|