您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
491 行
23 KiB
491 行
23 KiB
import atexit
|
|
import io
|
|
import glob
|
|
import json
|
|
import logging
|
|
import numpy as np
|
|
import os
|
|
import socket
|
|
import subprocess
|
|
import struct
|
|
|
|
from .brain import BrainInfo, BrainParameters, AllBrainInfo
|
|
from .exception import UnityEnvironmentException, UnityActionException, UnityTimeOutException
|
|
from .curriculum import Curriculum
|
|
|
|
from PIL import Image
|
|
from sys import platform
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger("unityagents")
|
|
|
|
|
|
class UnityEnvironment(object):
|
|
def __init__(self, file_name, worker_id=0,
|
|
base_port=5005, curriculum=None,
|
|
seed=0):
|
|
"""
|
|
Starts a new unity environment and establishes a connection with the environment.
|
|
Notice: Currently communication between Unity and Python takes place over an open socket without authentication.
|
|
Ensure that the network where training takes place is secure.
|
|
|
|
:string file_name: Name of Unity environment binary.
|
|
:int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this.
|
|
:int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios.
|
|
"""
|
|
|
|
atexit.register(self.close)
|
|
self.port = base_port + worker_id
|
|
self._buffer_size = 12000
|
|
self._version_ = "API-3"
|
|
self._loaded = False
|
|
self._open_socket = False
|
|
|
|
try:
|
|
# Establish communication socket
|
|
self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
|
self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
|
self._socket.bind(("localhost", self.port))
|
|
self._open_socket = True
|
|
except socket.error:
|
|
self._open_socket = True
|
|
self.close()
|
|
raise socket.error("Couldn't launch new environment because worker number {} is still in use. "
|
|
"You may need to manually close a previously opened environment "
|
|
"or use a different worker number.".format(str(worker_id)))
|
|
|
|
cwd = os.getcwd()
|
|
file_name = (file_name.strip()
|
|
.replace('.app', '').replace('.exe', '').replace('.x86_64', '').replace('.x86', ''))
|
|
true_filename = os.path.basename(os.path.normpath(file_name))
|
|
logger.debug('The true file name is {}'.format(true_filename))
|
|
launch_string = None
|
|
if platform == "linux" or platform == "linux2":
|
|
candidates = glob.glob(os.path.join(cwd, file_name) + '.x86_64')
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(os.path.join(cwd, file_name) + '.x86')
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(file_name + '.x86_64')
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(file_name + '.x86')
|
|
if len(candidates) > 0:
|
|
launch_string = candidates[0]
|
|
|
|
elif platform == 'darwin':
|
|
candidates = glob.glob(os.path.join(cwd, file_name + '.app', 'Contents', 'MacOS', true_filename))
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(os.path.join(file_name + '.app', 'Contents', 'MacOS', true_filename))
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(os.path.join(cwd, file_name + '.app', 'Contents', 'MacOS', '*'))
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(os.path.join(file_name + '.app', 'Contents', 'MacOS', '*'))
|
|
if len(candidates) > 0:
|
|
launch_string = candidates[0]
|
|
elif platform == 'win32':
|
|
candidates = glob.glob(os.path.join(cwd, file_name + '.exe'))
|
|
if len(candidates) == 0:
|
|
candidates = glob.glob(file_name + '.exe')
|
|
if len(candidates) > 0:
|
|
launch_string = candidates[0]
|
|
if launch_string is None:
|
|
self.close()
|
|
raise UnityEnvironmentException("Couldn't launch the {0} environment. "
|
|
"Provided filename does not match any environments."
|
|
.format(true_filename))
|
|
else:
|
|
logger.debug("This is the launch string {}".format(launch_string))
|
|
# Launch Unity environment
|
|
proc1 = subprocess.Popen(
|
|
[launch_string,
|
|
'--port', str(self.port),
|
|
'--seed', str(seed)])
|
|
|
|
self._socket.settimeout(30)
|
|
try:
|
|
try:
|
|
self._socket.listen(1)
|
|
self._conn, _ = self._socket.accept()
|
|
self._conn.settimeout(30)
|
|
p = self._conn.recv(self._buffer_size).decode('utf-8')
|
|
p = json.loads(p)
|
|
except socket.timeout as e:
|
|
raise UnityTimeOutException(
|
|
"The Unity environment took too long to respond. Make sure {} does not need user interaction to "
|
|
"launch and that the Academy and the external Brain(s) are attached to objects in the Scene."
|
|
.format(str(file_name)))
|
|
|
|
if "apiNumber" not in p:
|
|
self._unity_version = "API-1"
|
|
else:
|
|
self._unity_version = p["apiNumber"]
|
|
if self._unity_version != self._version_:
|
|
raise UnityEnvironmentException(
|
|
"The API number is not compatible between Unity and python. Python API : {0}, Unity API : "
|
|
"{1}.\nPlease go to https://github.com/Unity-Technologies/ml-agents to download the latest version "
|
|
"of ML-Agents.".format(self._version_, self._unity_version))
|
|
self._data = {}
|
|
self._global_done = None
|
|
self._academy_name = p["AcademyName"]
|
|
self._log_path = p["logPath"]
|
|
# Need to instantiate new AllBrainInfo
|
|
self._brains = {}
|
|
self._brain_names = p["brainNames"]
|
|
self._external_brain_names = p["externalBrainNames"]
|
|
self._external_brain_names = [] if self._external_brain_names is None else self._external_brain_names
|
|
self._num_brains = len(self._brain_names)
|
|
self._num_external_brains = len(self._external_brain_names)
|
|
self._resetParameters = p["resetParameters"]
|
|
self._curriculum = Curriculum(curriculum, self._resetParameters)
|
|
for i in range(self._num_brains):
|
|
self._brains[self._brain_names[i]] = BrainParameters(self._brain_names[i], p["brainParameters"][i])
|
|
self._loaded = True
|
|
logger.info("\n'{0}' started successfully!\n{1}".format(self._academy_name, str(self)))
|
|
if self._num_external_brains == 0:
|
|
logger.warning(" No External Brains found in the Unity Environment. "
|
|
"You will not be able to pass actions to your agent(s).")
|
|
except UnityEnvironmentException:
|
|
proc1.kill()
|
|
self.close()
|
|
raise
|
|
|
|
@property
|
|
def curriculum(self):
|
|
return self._curriculum
|
|
|
|
@property
|
|
def logfile_path(self):
|
|
return self._log_path
|
|
|
|
@property
|
|
def brains(self):
|
|
return self._brains
|
|
|
|
@property
|
|
def global_done(self):
|
|
return self._global_done
|
|
|
|
@property
|
|
def academy_name(self):
|
|
return self._academy_name
|
|
|
|
@property
|
|
def number_brains(self):
|
|
return self._num_brains
|
|
|
|
@property
|
|
def number_external_brains(self):
|
|
return self._num_external_brains
|
|
|
|
@property
|
|
def brain_names(self):
|
|
return self._brain_names
|
|
|
|
@property
|
|
def external_brain_names(self):
|
|
return self._external_brain_names
|
|
|
|
@staticmethod
|
|
def _process_pixels(image_bytes=None, bw=False):
|
|
"""
|
|
Converts byte array observation image into numpy array, re-sizes it, and optionally converts it to grey scale
|
|
:param image_bytes: input byte array corresponding to image
|
|
:return: processed numpy array of observation from environment
|
|
"""
|
|
s = bytearray(image_bytes)
|
|
image = Image.open(io.BytesIO(s))
|
|
s = np.array(image) / 255.0
|
|
if bw:
|
|
s = np.mean(s, axis=2)
|
|
s = np.reshape(s, [s.shape[0], s.shape[1], 1])
|
|
return s
|
|
|
|
def __str__(self):
|
|
_new_reset_param = self._curriculum.get_config()
|
|
for k in _new_reset_param:
|
|
self._resetParameters[k] = _new_reset_param[k]
|
|
return '''Unity Academy name: {0}
|
|
Number of Brains: {1}
|
|
Number of External Brains : {2}
|
|
Lesson number : {3}
|
|
Reset Parameters :\n\t\t{4}'''.format(self._academy_name, str(self._num_brains),
|
|
str(self._num_external_brains), self._curriculum.get_lesson_number,
|
|
"\n\t\t".join([str(k) + " -> " + str(self._resetParameters[k])
|
|
for k in self._resetParameters])) + '\n' + \
|
|
'\n'.join([str(self._brains[b]) for b in self._brains])
|
|
|
|
def _recv_bytes(self):
|
|
try:
|
|
s = self._conn.recv(self._buffer_size)
|
|
message_length = struct.unpack("I", bytearray(s[:4]))[0]
|
|
s = s[4:]
|
|
while len(s) != message_length:
|
|
s += self._conn.recv(self._buffer_size)
|
|
except socket.timeout as e:
|
|
raise UnityTimeOutException("The environment took too long to respond.", self._log_path)
|
|
return s
|
|
|
|
def _get_state_image(self, bw):
|
|
"""
|
|
Receives observation from socket, and confirms.
|
|
:param bw:
|
|
:return:
|
|
"""
|
|
s = self._recv_bytes()
|
|
s = self._process_pixels(image_bytes=s, bw=bw)
|
|
self._conn.send(b"RECEIVED")
|
|
return s
|
|
|
|
def _get_state_dict(self):
|
|
"""
|
|
Receives dictionary of state information from socket, and confirms.
|
|
:return:
|
|
"""
|
|
state = self._recv_bytes().decode('utf-8')
|
|
if state[:14] == "END_OF_MESSAGE":
|
|
return {}, state[15:] == 'True'
|
|
self._conn.send(b"RECEIVED")
|
|
state_dict = json.loads(state)
|
|
return state_dict, None
|
|
|
|
def reset(self, train_mode=True, config=None, lesson=None) -> AllBrainInfo:
|
|
"""
|
|
Sends a signal to reset the unity environment.
|
|
:return: AllBrainInfo : A Data structure corresponding to the initial reset state of the environment.
|
|
"""
|
|
if config is None:
|
|
config = self._curriculum.get_config(lesson)
|
|
elif config != {}:
|
|
logger.info("\nAcademy Reset with parameters : \t{0}"
|
|
.format(', '.join([str(x) + ' -> ' + str(config[x]) for x in config])))
|
|
for k in config:
|
|
if (k in self._resetParameters) and (isinstance(config[k], (int, float))):
|
|
self._resetParameters[k] = config[k]
|
|
elif not isinstance(config[k], (int, float)):
|
|
raise UnityEnvironmentException(
|
|
"The value for parameter '{0}'' must be an Integer or a Float.".format(k))
|
|
else:
|
|
raise UnityEnvironmentException("The parameter '{0}' is not a valid parameter.".format(k))
|
|
|
|
if self._loaded:
|
|
self._conn.send(b"RESET")
|
|
try:
|
|
self._conn.recv(self._buffer_size)
|
|
except socket.timeout as e:
|
|
raise UnityTimeOutException("The environment took too long to respond.", self._log_path)
|
|
self._conn.send(json.dumps({"train_model": train_mode, "parameters": config}).encode('utf-8'))
|
|
return self._get_state()
|
|
else:
|
|
raise UnityEnvironmentException("No Unity environment is loaded.")
|
|
|
|
def _get_state(self) -> AllBrainInfo:
|
|
"""
|
|
Collects experience information from all external brains in environment at current step.
|
|
:return: a dictionary of BrainInfo objects.
|
|
"""
|
|
self._data = {}
|
|
while True:
|
|
state_dict, end_of_message = self._get_state_dict()
|
|
if end_of_message is not None:
|
|
self._global_done = end_of_message
|
|
for _b in self._brain_names:
|
|
if _b not in self._data:
|
|
self._data[_b] = BrainInfo([], np.array([]), [], np.array([]),
|
|
[], [], [], np.array([]), [], max_reached=[])
|
|
return self._data
|
|
b = state_dict["brain_name"]
|
|
n_agent = len(state_dict["agents"])
|
|
try:
|
|
if self._brains[b].vector_observation_space_type == "continuous":
|
|
vector_obs = np.array(state_dict["vectorObservations"]).reshape(
|
|
(n_agent, self._brains[b].vector_observation_space_size
|
|
* self._brains[b].num_stacked_vector_observations))
|
|
else:
|
|
vector_obs = np.array(state_dict["vectorObservations"]).reshape(
|
|
(n_agent, self._brains[b].num_stacked_vector_observations))
|
|
except UnityActionException:
|
|
raise UnityActionException("Brain {0} has an invalid vector observation. "
|
|
"Expecting {1} {2} vector observations but received {3}."
|
|
.format(b, n_agent if self._brains[b].vector_observation_space_type == "discrete"
|
|
else str(self._brains[b].vector_observation_space_size * n_agent
|
|
* self._brains[b].num_stacked_vector_observations),
|
|
self._brains[b].vector_observation_space_type,
|
|
len(state_dict["vectorObservations"])))
|
|
|
|
memories = np.array(state_dict["memories"]).reshape((n_agent, -1))
|
|
text_obs = state_dict["textObservations"]
|
|
rewards = state_dict["rewards"]
|
|
dones = state_dict["dones"]
|
|
agents = state_dict["agents"]
|
|
maxes = state_dict["maxes"]
|
|
|
|
if n_agent > 0:
|
|
vector_actions = np.array(state_dict["previousVectorActions"]).reshape((n_agent, -1))
|
|
text_actions = state_dict["previousTextActions"]
|
|
else:
|
|
vector_actions = np.array([])
|
|
text_actions = []
|
|
observations = []
|
|
for o in range(self._brains[b].number_visual_observations):
|
|
obs_n = []
|
|
for a in range(n_agent):
|
|
obs_n.append(self._get_state_image(self._brains[b].camera_resolutions[o]['blackAndWhite']))
|
|
|
|
observations.append(np.array(obs_n))
|
|
self._data[b] = BrainInfo(observations, vector_obs, text_obs, memories, rewards,
|
|
agents, dones, vector_actions, text_actions, max_reached=maxes)
|
|
|
|
def _send_action(self, vector_action ,memory, text_action):
|
|
"""
|
|
Send dictionary of actions, memories, and value estimates over socket.
|
|
:param vector_action: a dictionary of lists of vector actions.
|
|
:param memory: a dictionary of lists of of memories.
|
|
:param text_action: a dictionary of lists of text actions.
|
|
"""
|
|
try:
|
|
self._conn.recv(self._buffer_size)
|
|
except socket.timeout as e:
|
|
raise UnityTimeOutException("The environment took too long to respond.", self._log_path)
|
|
action_message = {"vector_action": vector_action, "memory": memory, "text_action": text_action}
|
|
self._conn.send(self._append_length(json.dumps(action_message).encode('utf-8')))
|
|
|
|
@staticmethod
|
|
def _append_length(message):
|
|
return struct.pack("I", len(message)) + message
|
|
|
|
@staticmethod
|
|
def _flatten(arr):
|
|
"""
|
|
Converts dictionary of arrays to list for transmission over socket.
|
|
:param arr: numpy vector.
|
|
:return: flattened list.
|
|
"""
|
|
if isinstance(arr, (int, np.int_, float, np.float_)):
|
|
arr = [float(arr)]
|
|
if isinstance(arr, np.ndarray):
|
|
arr = arr.tolist()
|
|
if len(arr) == 0:
|
|
return arr
|
|
if isinstance(arr[0], np.ndarray):
|
|
arr = [item for sublist in arr for item in sublist.tolist()]
|
|
if isinstance(arr[0], list):
|
|
arr = [item for sublist in arr for item in sublist]
|
|
arr = [float(x) for x in arr]
|
|
return arr
|
|
|
|
def step(self, vector_action=None, memory=None, text_action=None) -> AllBrainInfo:
|
|
"""
|
|
Provides the environment with an action, moves the environment dynamics forward accordingly, and returns
|
|
observation, state, and reward information to the agent.
|
|
:param vector_action: Agent's vector action to send to environment. Can be a scalar or vector of int/floats.
|
|
:param memory: Vector corresponding to memory used for RNNs, frame-stacking, or other auto-regressive process.
|
|
:param text_action: Text action to send to environment for.
|
|
:return: AllBrainInfo : A Data structure corresponding to the new state of the environment.
|
|
"""
|
|
vector_action = {} if vector_action is None else vector_action
|
|
memory = {} if memory is None else memory
|
|
text_action = {} if text_action is None else text_action
|
|
if self._loaded and not self._global_done and self._global_done is not None:
|
|
if isinstance(vector_action, (int, np.int_, float, np.float_, list, np.ndarray)):
|
|
if self._num_external_brains == 1:
|
|
vector_action = {self._external_brain_names[0]: vector_action}
|
|
elif self._num_external_brains > 1:
|
|
raise UnityActionException(
|
|
"You have {0} brains, you need to feed a dictionary of brain names a keys, "
|
|
"and vector_actions as values".format(self._num_brains))
|
|
else:
|
|
raise UnityActionException(
|
|
"There are no external brains in the environment, "
|
|
"step cannot take a vector_action input")
|
|
|
|
if isinstance(memory, (int, np.int_, float, np.float_, list, np.ndarray)):
|
|
if self._num_external_brains == 1:
|
|
memory = {self._external_brain_names[0]: memory}
|
|
elif self._num_external_brains > 1:
|
|
raise UnityActionException(
|
|
"You have {0} brains, you need to feed a dictionary of brain names as keys "
|
|
"and memories as values".format(self._num_brains))
|
|
else:
|
|
raise UnityActionException(
|
|
"There are no external brains in the environment, "
|
|
"step cannot take a memory input")
|
|
if isinstance(text_action, (str, list, np.ndarray)):
|
|
if self._num_external_brains == 1:
|
|
text_action = {self._external_brain_names[0]: text_action}
|
|
elif self._num_external_brains > 1:
|
|
raise UnityActionException(
|
|
"You have {0} brains, you need to feed a dictionary of brain names as keys "
|
|
"and text_actions as values".format(self._num_brains))
|
|
else:
|
|
raise UnityActionException(
|
|
"There are no external brains in the environment, "
|
|
"step cannot take a value input")
|
|
|
|
for brain_name in list(vector_action.keys()) + list(memory.keys()) + list(text_action.keys()):
|
|
if brain_name not in self._external_brain_names:
|
|
raise UnityActionException(
|
|
"The name {0} does not correspond to an external brain "
|
|
"in the environment".format(brain_name))
|
|
|
|
for b in self._external_brain_names:
|
|
n_agent = len(self._data[b].agents)
|
|
if b not in vector_action:
|
|
# raise UnityActionException("You need to input an action for the brain {0}".format(b))
|
|
if self._brains[b].vector_action_space_type == "discrete":
|
|
vector_action[b] = [0.0] * n_agent
|
|
else:
|
|
vector_action[b] = [0.0] * n_agent * self._brains[b].vector_action_space_size
|
|
else:
|
|
vector_action[b] = self._flatten(vector_action[b])
|
|
if b not in memory:
|
|
memory[b] = []
|
|
else:
|
|
if memory[b] is None:
|
|
memory[b] = []
|
|
else:
|
|
memory[b] = self._flatten(memory[b])
|
|
if b not in text_action:
|
|
text_action[b] = [""] * n_agent
|
|
else:
|
|
if text_action[b] is None:
|
|
text_action[b] = []
|
|
if isinstance(text_action[b], str):
|
|
text_action[b] = [text_action[b]] * n_agent
|
|
if not ((len(text_action[b]) == n_agent) or len(text_action[b]) == 0):
|
|
raise UnityActionException(
|
|
"There was a mismatch between the provided text_action and environment's expectation: "
|
|
"The brain {0} expected {1} text_action but was given {2}".format(
|
|
b, n_agent, len(text_action[b])))
|
|
if not ((self._brains[b].vector_action_space_type == "discrete" and len(vector_action[b]) == n_agent) or
|
|
(self._brains[b].vector_action_space_type == "continuous" and len(
|
|
vector_action[b]) == self._brains[b].vector_action_space_size * n_agent)):
|
|
raise UnityActionException(
|
|
"There was a mismatch between the provided action and environment's expectation: "
|
|
"The brain {0} expected {1} {2} action(s), but was provided: {3}"
|
|
.format(b, n_agent if self._brains[b].vector_action_space_type == "discrete" else
|
|
str(self._brains[b].vector_action_space_size * n_agent),
|
|
self._brains[b].vector_action_space_type,
|
|
str(vector_action[b])))
|
|
|
|
self._conn.send(b"STEP")
|
|
self._send_action(vector_action, memory, text_action)
|
|
return self._get_state()
|
|
elif not self._loaded:
|
|
raise UnityEnvironmentException("No Unity environment is loaded.")
|
|
elif self._global_done:
|
|
raise UnityActionException("The episode is completed. Reset the environment with 'reset()'")
|
|
elif self.global_done is None:
|
|
raise UnityActionException(
|
|
"You cannot conduct step without first calling reset. Reset the environment with 'reset()'")
|
|
|
|
def close(self):
|
|
"""
|
|
Sends a shutdown signal to the unity environment, and closes the socket connection.
|
|
"""
|
|
if self._loaded & self._open_socket:
|
|
self._conn.send(b"EXIT")
|
|
self._conn.close()
|
|
if self._open_socket:
|
|
self._socket.close()
|
|
self._loaded = False
|
|
else:
|
|
raise UnityEnvironmentException("No Unity environment is loaded.")
|