您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
161 行
5.3 KiB
161 行
5.3 KiB
import yaml
|
|
from typing import Any, Dict, TextIO
|
|
|
|
from mlagents.trainers.meta_curriculum import MetaCurriculum
|
|
from mlagents.envs.exception import UnityEnvironmentException
|
|
from mlagents.trainers.trainer import Trainer
|
|
from mlagents.trainers.ppo.trainer import PPOTrainer
|
|
from mlagents.trainers.sac.trainer import SACTrainer
|
|
from mlagents.trainers.bc.offline_trainer import OfflineBCTrainer
|
|
|
|
|
|
class TrainerFactory:
|
|
def __init__(
|
|
self,
|
|
trainer_config: Any,
|
|
summaries_dir: str,
|
|
run_id: str,
|
|
model_path: str,
|
|
keep_checkpoints: int,
|
|
train_model: bool,
|
|
load_model: bool,
|
|
seed: int,
|
|
meta_curriculum: MetaCurriculum = None,
|
|
multi_gpu: bool = False,
|
|
):
|
|
self.trainer_config = trainer_config
|
|
self.summaries_dir = summaries_dir
|
|
self.run_id = run_id
|
|
self.model_path = model_path
|
|
self.keep_checkpoints = keep_checkpoints
|
|
self.train_model = train_model
|
|
self.load_model = load_model
|
|
self.seed = seed
|
|
self.meta_curriculum = meta_curriculum
|
|
self.multi_gpu = multi_gpu
|
|
|
|
def generate(self, brain_name: str) -> Trainer:
|
|
return initialize_trainer(
|
|
self.trainer_config,
|
|
brain_name,
|
|
self.summaries_dir,
|
|
self.run_id,
|
|
self.model_path,
|
|
self.keep_checkpoints,
|
|
self.train_model,
|
|
self.load_model,
|
|
self.seed,
|
|
self.meta_curriculum,
|
|
self.multi_gpu,
|
|
)
|
|
|
|
|
|
def initialize_trainer(
|
|
trainer_config: Any,
|
|
brain_name: str,
|
|
summaries_dir: str,
|
|
run_id: str,
|
|
model_path: str,
|
|
keep_checkpoints: int,
|
|
train_model: bool,
|
|
load_model: bool,
|
|
seed: int,
|
|
meta_curriculum: MetaCurriculum = None,
|
|
multi_gpu: bool = False,
|
|
) -> Trainer:
|
|
"""
|
|
Initializes a trainer given a provided trainer configuration and brain parameters, as well as
|
|
some general training session options.
|
|
|
|
:param trainer_config: Original trainer configuration loaded from YAML
|
|
:param brain_name: Name of the brain to be associated with trainer
|
|
:param summaries_dir: Directory to store trainer summary statistics
|
|
:param run_id: Run ID to associate with this training run
|
|
:param model_path: Path to save the model
|
|
:param keep_checkpoints: How many model checkpoints to keep
|
|
:param train_model: Whether to train the model (vs. run inference)
|
|
:param load_model: Whether to load the model or randomly initialize
|
|
:param seed: The random seed to use
|
|
:param meta_curriculum: Optional meta_curriculum, used to determine a reward buffer length for PPOTrainer
|
|
:param multi_gpu: Whether to use multi-GPU training
|
|
:return:
|
|
"""
|
|
trainer_parameters = trainer_config["default"].copy()
|
|
trainer_parameters["summary_path"] = "{basedir}/{name}".format(
|
|
basedir=summaries_dir, name=str(run_id) + "_" + brain_name
|
|
)
|
|
trainer_parameters["model_path"] = "{basedir}/{name}".format(
|
|
basedir=model_path, name=brain_name
|
|
)
|
|
trainer_parameters["keep_checkpoints"] = keep_checkpoints
|
|
if brain_name in trainer_config:
|
|
_brain_key: Any = brain_name
|
|
while not isinstance(trainer_config[_brain_key], dict):
|
|
_brain_key = trainer_config[_brain_key]
|
|
trainer_parameters.update(trainer_config[_brain_key])
|
|
|
|
trainer = None
|
|
if trainer_parameters["trainer"] == "offline_bc":
|
|
trainer = OfflineBCTrainer(
|
|
brain_name, trainer_parameters, train_model, load_model, seed, run_id
|
|
)
|
|
elif trainer_parameters["trainer"] == "ppo":
|
|
trainer = PPOTrainer(
|
|
brain_name,
|
|
meta_curriculum.brains_to_curriculums[brain_name].min_lesson_length
|
|
if meta_curriculum
|
|
else 1,
|
|
trainer_parameters,
|
|
train_model,
|
|
load_model,
|
|
seed,
|
|
run_id,
|
|
multi_gpu,
|
|
)
|
|
elif trainer_parameters["trainer"] == "sac":
|
|
trainer = SACTrainer(
|
|
brain_name,
|
|
meta_curriculum.brains_to_curriculums[brain_name].min_lesson_length
|
|
if meta_curriculum
|
|
else 1,
|
|
trainer_parameters,
|
|
train_model,
|
|
load_model,
|
|
seed,
|
|
run_id,
|
|
)
|
|
else:
|
|
raise UnityEnvironmentException(
|
|
"The trainer config contains "
|
|
"an unknown trainer type for "
|
|
"brain {}".format(brain_name)
|
|
)
|
|
return trainer
|
|
|
|
|
|
def load_config(config_path: str) -> Dict[str, Any]:
|
|
try:
|
|
with open(config_path) as data_file:
|
|
return _load_config(data_file)
|
|
except IOError:
|
|
raise UnityEnvironmentException(
|
|
f"Config file could not be found at {config_path}."
|
|
)
|
|
except UnicodeDecodeError:
|
|
raise UnityEnvironmentException(
|
|
f"There was an error decoding Config file from {config_path}. "
|
|
f"Make sure your file is save using UTF-8"
|
|
)
|
|
|
|
|
|
def _load_config(fp: TextIO) -> Dict[str, Any]:
|
|
"""
|
|
Load the yaml config from the file-like object.
|
|
"""
|
|
try:
|
|
return yaml.safe_load(fp)
|
|
except yaml.parser.ParserError as e:
|
|
raise UnityEnvironmentException(
|
|
"Error parsing yaml file. Please check for formatting errors. "
|
|
"A tool such as http://www.yamllint.com/ can be helpful with this."
|
|
) from e
|