您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
385 行
14 KiB
385 行
14 KiB
using System.Collections.Generic;
|
|
using System;
|
|
using UnityEngine;
|
|
using Unity.Barracuda;
|
|
using Unity.MLAgents.Inference.Utils;
|
|
using Unity.MLAgents.Sensors;
|
|
|
|
namespace Unity.MLAgents.Inference
|
|
{
|
|
/// <summary>
|
|
/// Reshapes a Tensor so that its first dimension becomes equal to the current batch size
|
|
/// and initializes its content to be zeros. Will only work on 2-dimensional tensors.
|
|
/// The second dimension of the Tensor will not be modified.
|
|
/// </summary>
|
|
internal class BiDimensionalOutputGenerator : TensorGenerator.IGenerator
|
|
{
|
|
readonly ITensorAllocator m_Allocator;
|
|
|
|
public BiDimensionalOutputGenerator(ITensorAllocator allocator)
|
|
{
|
|
m_Allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable<AgentInfoSensorsPair> infos)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the BatchSize input : Will be a one dimensional
|
|
/// integer array of size 1 containing the batch size.
|
|
/// </summary>
|
|
internal class BatchSizeGenerator : TensorGenerator.IGenerator
|
|
{
|
|
readonly ITensorAllocator m_Allocator;
|
|
|
|
public BatchSizeGenerator(ITensorAllocator allocator)
|
|
{
|
|
m_Allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable<AgentInfoSensorsPair> infos)
|
|
{
|
|
tensorProxy.data?.Dispose();
|
|
tensorProxy.data = m_Allocator.Alloc(new TensorShape(1, 1));
|
|
tensorProxy.data[0] = batchSize;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the SequenceLength input : Will be a one
|
|
/// dimensional integer array of size 1 containing 1.
|
|
/// Note : the sequence length is always one since recurrent networks only predict for
|
|
/// one step at the time.
|
|
/// </summary>
|
|
internal class SequenceLengthGenerator : TensorGenerator.IGenerator
|
|
{
|
|
readonly ITensorAllocator m_Allocator;
|
|
|
|
public SequenceLengthGenerator(ITensorAllocator allocator)
|
|
{
|
|
m_Allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable<AgentInfoSensorsPair> infos)
|
|
{
|
|
tensorProxy.shape = new long[0];
|
|
tensorProxy.data?.Dispose();
|
|
tensorProxy.data = m_Allocator.Alloc(new TensorShape(1, 1));
|
|
tensorProxy.data[0] = 1;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the VectorObservation input : Will be a two
|
|
/// dimensional float array of dimension [batchSize x vectorObservationSize].
|
|
/// It will use the Vector Observation data contained in the agentInfo to fill the data
|
|
/// of the tensor.
|
|
/// </summary>
|
|
internal class VectorObservationGenerator : TensorGenerator.IGenerator
|
|
{
|
|
readonly ITensorAllocator m_Allocator;
|
|
List<int> m_SensorIndices = new List<int>();
|
|
ObservationWriter m_ObservationWriter = new ObservationWriter();
|
|
|
|
public VectorObservationGenerator(ITensorAllocator allocator)
|
|
{
|
|
m_Allocator = allocator;
|
|
}
|
|
|
|
public void AddSensorIndex(int sensorIndex)
|
|
{
|
|
m_SensorIndices.Add(sensorIndex);
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable<AgentInfoSensorsPair> infos)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
|
|
var vecObsSizeT = tensorProxy.shape[tensorProxy.shape.Length - 1];
|
|
var agentIndex = 0;
|
|
foreach (var info in infos)
|
|
{
|
|
if (info.agentInfo.done)
|
|
{
|
|
// If the agent is done, we might have a stale reference to the sensors
|
|
// e.g. a dependent object might have been disposed.
|
|
// To avoid this, just fill observation with zeroes instead of calling sensor.Write.
|
|
TensorUtils.FillTensorBatch(tensorProxy, agentIndex, 0.0f);
|
|
}
|
|
else
|
|
{
|
|
var tensorOffset = 0;
|
|
// Write each sensor consecutively to the tensor
|
|
foreach (var sensorIndex in m_SensorIndices)
|
|
{
|
|
var sensor = info.sensors[sensorIndex];
|
|
m_ObservationWriter.SetTarget(tensorProxy, agentIndex, tensorOffset);
|
|
var numWritten = sensor.Write(m_ObservationWriter);
|
|
tensorOffset += numWritten;
|
|
}
|
|
Debug.AssertFormat(
|
|
tensorOffset == vecObsSizeT,
|
|
"mismatch between vector observation size ({0}) and number of observations written ({1})",
|
|
vecObsSizeT, tensorOffset
|
|
);
|
|
}
|
|
|
|
agentIndex++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the Recurrent input : Will be a two
|
|
/// dimensional float array of dimension [batchSize x memorySize].
|
|
/// It will use the Memory data contained in the agentInfo to fill the data
|
|
/// of the tensor.
|
|
/// </summary>
|
|
internal class RecurrentInputGenerator : TensorGenerator.IGenerator
|
|
{
|
|
readonly ITensorAllocator m_Allocator;
|
|
Dictionary<int, List<float>> m_Memories;
|
|
|
|
public RecurrentInputGenerator(
|
|
ITensorAllocator allocator,
|
|
Dictionary<int, List<float>> memories)
|
|
{
|
|
m_Allocator = allocator;
|
|
m_Memories = memories;
|
|
}
|
|
|
|
public void Generate(
|
|
TensorProxy tensorProxy, int batchSize, IEnumerable<AgentInfoSensorsPair> infos)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
|
|
|
|
var memorySize = tensorProxy.shape[tensorProxy.shape.Length - 1];
|
|
var agentIndex = 0;
|
|
foreach (var infoSensorPair in infos)
|
|
{
|
|
var info = infoSensorPair.agentInfo;
|
|
List<float> memory;
|
|
|
|
if (info.done)
|
|
{
|
|
m_Memories.Remove(info.episodeId);
|
|
}
|
|
if (!m_Memories.TryGetValue(info.episodeId, out memory))
|
|
{
|
|
for (var j = 0; j < memorySize; j++)
|
|
{
|
|
tensorProxy.data[agentIndex, j] = 0;
|
|
}
|
|
agentIndex++;
|
|
continue;
|
|
}
|
|
for (var j = 0; j < Math.Min(memorySize, memory.Count); j++)
|
|
{
|
|
if (j >= memory.Count)
|
|
{
|
|
break;
|
|
}
|
|
tensorProxy.data[agentIndex, j] = memory[j];
|
|
}
|
|
agentIndex++;
|
|
}
|
|
}
|
|
}
|
|
|
|
internal class BarracudaRecurrentInputGenerator : TensorGenerator.IGenerator
|
|
{
|
|
int m_MemoriesCount;
|
|
readonly int m_MemoryIndex;
|
|
readonly ITensorAllocator m_Allocator;
|
|
|
|
Dictionary<int, List<float>> m_Memories;
|
|
|
|
public BarracudaRecurrentInputGenerator(
|
|
int memoryIndex,
|
|
ITensorAllocator allocator,
|
|
Dictionary<int, List<float>> memories)
|
|
{
|
|
m_MemoryIndex = memoryIndex;
|
|
m_Allocator = allocator;
|
|
m_Memories = memories;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable<AgentInfoSensorsPair> infos)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
|
|
|
|
var memorySize = (int)tensorProxy.shape[tensorProxy.shape.Length - 1];
|
|
var agentIndex = 0;
|
|
foreach (var infoSensorPair in infos)
|
|
{
|
|
var info = infoSensorPair.agentInfo;
|
|
var offset = memorySize * m_MemoryIndex;
|
|
List<float> memory;
|
|
if (info.done)
|
|
{
|
|
m_Memories.Remove(info.episodeId);
|
|
}
|
|
if (!m_Memories.TryGetValue(info.episodeId, out memory))
|
|
{
|
|
for (var j = 0; j < memorySize; j++)
|
|
{
|
|
tensorProxy.data[agentIndex, j] = 0;
|
|
}
|
|
agentIndex++;
|
|
continue;
|
|
}
|
|
for (var j = 0; j < memorySize; j++)
|
|
{
|
|
if (j >= memory.Count)
|
|
{
|
|
break;
|
|
}
|
|
|
|
tensorProxy.data[agentIndex, j] = memory[j + offset];
|
|
}
|
|
agentIndex++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the Previous Action input : Will be a two
|
|
/// dimensional integer array of dimension [batchSize x actionSize].
|
|
/// It will use the previous action data contained in the agentInfo to fill the data
|
|
/// of the tensor.
|
|
/// </summary>
|
|
internal class PreviousActionInputGenerator : TensorGenerator.IGenerator
|
|
{
|
|
readonly ITensorAllocator m_Allocator;
|
|
|
|
public PreviousActionInputGenerator(ITensorAllocator allocator)
|
|
{
|
|
m_Allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable<AgentInfoSensorsPair> infos)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
|
|
|
|
var actionSize = tensorProxy.shape[tensorProxy.shape.Length - 1];
|
|
var agentIndex = 0;
|
|
foreach (var infoSensorPair in infos)
|
|
{
|
|
var info = infoSensorPair.agentInfo;
|
|
var pastAction = info.storedVectorActions;
|
|
if (pastAction != null)
|
|
{
|
|
for (var j = 0; j < actionSize; j++)
|
|
{
|
|
tensorProxy.data[agentIndex, j] = pastAction[j];
|
|
}
|
|
}
|
|
|
|
agentIndex++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the Action Mask input : Will be a two
|
|
/// dimensional float array of dimension [batchSize x numActionLogits].
|
|
/// It will use the Action Mask data contained in the agentInfo to fill the data
|
|
/// of the tensor.
|
|
/// </summary>
|
|
internal class ActionMaskInputGenerator : TensorGenerator.IGenerator
|
|
{
|
|
readonly ITensorAllocator m_Allocator;
|
|
|
|
public ActionMaskInputGenerator(ITensorAllocator allocator)
|
|
{
|
|
m_Allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable<AgentInfoSensorsPair> infos)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
|
|
|
|
var maskSize = tensorProxy.shape[tensorProxy.shape.Length - 1];
|
|
var agentIndex = 0;
|
|
foreach (var infoSensorPair in infos)
|
|
{
|
|
var agentInfo = infoSensorPair.agentInfo;
|
|
var maskList = agentInfo.discreteActionMasks;
|
|
for (var j = 0; j < maskSize; j++)
|
|
{
|
|
var isUnmasked = (maskList != null && maskList[j]) ? 0.0f : 1.0f;
|
|
tensorProxy.data[agentIndex, j] = isUnmasked;
|
|
}
|
|
agentIndex++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the Epsilon input : Will be a two
|
|
/// dimensional float array of dimension [batchSize x actionSize].
|
|
/// It will use the generate random input data from a normal Distribution.
|
|
/// </summary>
|
|
internal class RandomNormalInputGenerator : TensorGenerator.IGenerator
|
|
{
|
|
readonly RandomNormal m_RandomNormal;
|
|
readonly ITensorAllocator m_Allocator;
|
|
|
|
public RandomNormalInputGenerator(int seed, ITensorAllocator allocator)
|
|
{
|
|
m_RandomNormal = new RandomNormal(seed);
|
|
m_Allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable<AgentInfoSensorsPair> infos)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
|
|
TensorUtils.FillTensorWithRandomNormal(tensorProxy, m_RandomNormal);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the Visual Observation input : Will be a 4
|
|
/// dimensional float array of dimension [batchSize x width x height x numChannels].
|
|
/// It will use the Texture input data contained in the agentInfo to fill the data
|
|
/// of the tensor.
|
|
/// </summary>
|
|
internal class VisualObservationInputGenerator : TensorGenerator.IGenerator
|
|
{
|
|
readonly int m_SensorIndex;
|
|
readonly ITensorAllocator m_Allocator;
|
|
ObservationWriter m_ObservationWriter = new ObservationWriter();
|
|
|
|
public VisualObservationInputGenerator(
|
|
int sensorIndex, ITensorAllocator allocator)
|
|
{
|
|
m_SensorIndex = sensorIndex;
|
|
m_Allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable<AgentInfoSensorsPair> infos)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
|
|
var agentIndex = 0;
|
|
foreach (var infoSensorPair in infos)
|
|
{
|
|
var sensor = infoSensorPair.sensors[m_SensorIndex];
|
|
if (infoSensorPair.agentInfo.done)
|
|
{
|
|
// If the agent is done, we might have a stale reference to the sensors
|
|
// e.g. a dependent object might have been disposed.
|
|
// To avoid this, just fill observation with zeroes instead of calling sensor.Write.
|
|
TensorUtils.FillTensorBatch(tensorProxy, agentIndex, 0.0f);
|
|
}
|
|
else
|
|
{
|
|
m_ObservationWriter.SetTarget(tensorProxy, agentIndex, 0);
|
|
sensor.Write(m_ObservationWriter);
|
|
}
|
|
agentIndex++;
|
|
}
|
|
}
|
|
}
|
|
}
|