您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
154 行
6.1 KiB
154 行
6.1 KiB
import abc
|
|
from typing import Dict, Any, List, Tuple
|
|
import numpy as np
|
|
|
|
from mlagents.tf_utils.tf import tf
|
|
from mlagents.trainers.buffer import AgentBuffer
|
|
from mlagents.trainers.tf_policy import TFPolicy
|
|
from mlagents.trainers.policy import Policy
|
|
from mlagents.trainers.trajectory import SplitObservations
|
|
from mlagents.trainers.components.reward_signals.reward_signal_factory import (
|
|
create_reward_signal,
|
|
)
|
|
|
|
|
|
class Optimizer(abc.ABC):
|
|
"""
|
|
Creates loss functions and auxillary networks (e.g. Q or Value) needed for training.
|
|
Provides methods to update the Policy.
|
|
"""
|
|
|
|
@abc.abstractmethod
|
|
def __init__(self, policy: Policy):
|
|
"""
|
|
Create loss functions and auxillary networks.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
|
|
"""
|
|
Update the Policy based on the batch that was passed in.
|
|
"""
|
|
pass
|
|
|
|
|
|
class TFOptimizer(Optimizer, abc.ABC): # pylint: disable=W0223
|
|
def __init__(self, policy: TFPolicy, trainer_params: Dict[str, Any]):
|
|
super().__init__(policy)
|
|
self.sess = policy.sess
|
|
self.policy = policy
|
|
self.update_dict: Dict[str, tf.Tensor] = {}
|
|
self.value_heads: Dict[str, tf.Tensor] = {}
|
|
self.create_reward_signals(trainer_params["reward_signals"])
|
|
self.memory_in: tf.Tensor = None
|
|
self.memory_out: tf.Tensor = None
|
|
self.m_size: int = 0
|
|
|
|
def get_trajectory_value_estimates(
|
|
self, batch: AgentBuffer, next_obs: List[np.ndarray], done: bool
|
|
) -> Tuple[Dict[str, np.ndarray], Dict[str, float]]:
|
|
feed_dict: Dict[tf.Tensor, Any] = {
|
|
self.policy.batch_size_ph: batch.num_experiences,
|
|
self.policy.sequence_length_ph: batch.num_experiences, # We want to feed data in batch-wise, not time-wise.
|
|
}
|
|
|
|
if self.policy.vec_obs_size > 0:
|
|
feed_dict[self.policy.vector_in] = batch["vector_obs"]
|
|
if self.policy.vis_obs_size > 0:
|
|
for i in range(len(self.policy.visual_in)):
|
|
_obs = batch["visual_obs%d" % i]
|
|
feed_dict[self.policy.visual_in[i]] = _obs
|
|
if self.policy.use_recurrent:
|
|
feed_dict[self.policy.memory_in] = [np.zeros((self.policy.m_size))]
|
|
feed_dict[self.memory_in] = [np.zeros((self.m_size))]
|
|
if self.policy.prev_action is not None:
|
|
feed_dict[self.policy.prev_action] = batch["prev_action"]
|
|
|
|
if self.policy.use_recurrent:
|
|
value_estimates, policy_mem, value_mem = self.sess.run(
|
|
[self.value_heads, self.policy.memory_out, self.memory_out], feed_dict
|
|
)
|
|
prev_action = batch["actions"][-1]
|
|
else:
|
|
value_estimates = self.sess.run(self.value_heads, feed_dict)
|
|
prev_action = None
|
|
policy_mem = None
|
|
value_mem = None
|
|
value_estimates = {k: np.squeeze(v, axis=1) for k, v in value_estimates.items()}
|
|
|
|
# We do this in a separate step to feed the memory outs - a further optimization would
|
|
# be to append to the obs before running sess.run.
|
|
final_value_estimates = self.get_value_estimates(
|
|
next_obs, done, policy_mem, value_mem, prev_action
|
|
)
|
|
|
|
return value_estimates, final_value_estimates
|
|
|
|
def get_value_estimates(
|
|
self,
|
|
next_obs: List[np.ndarray],
|
|
done: bool,
|
|
policy_memory: np.ndarray = None,
|
|
value_memory: np.ndarray = None,
|
|
prev_action: np.ndarray = None,
|
|
) -> Dict[str, float]:
|
|
"""
|
|
Generates value estimates for bootstrapping.
|
|
:param experience: AgentExperience to be used for bootstrapping.
|
|
:param done: Whether or not this is the last element of the episode, in which case the value estimate will be 0.
|
|
:return: The value estimate dictionary with key being the name of the reward signal and the value the
|
|
corresponding value estimate.
|
|
"""
|
|
|
|
feed_dict: Dict[tf.Tensor, Any] = {
|
|
self.policy.batch_size_ph: 1,
|
|
self.policy.sequence_length_ph: 1,
|
|
}
|
|
vec_vis_obs = SplitObservations.from_observations(next_obs)
|
|
for i in range(len(vec_vis_obs.visual_observations)):
|
|
feed_dict[self.policy.visual_in[i]] = [vec_vis_obs.visual_observations[i]]
|
|
|
|
if self.policy.vec_obs_size > 0:
|
|
feed_dict[self.policy.vector_in] = [vec_vis_obs.vector_observations]
|
|
if policy_memory is not None:
|
|
feed_dict[self.policy.memory_in] = policy_memory
|
|
if value_memory is not None:
|
|
feed_dict[self.memory_in] = value_memory
|
|
if prev_action is not None:
|
|
feed_dict[self.policy.prev_action] = [prev_action]
|
|
value_estimates = self.sess.run(self.value_heads, feed_dict)
|
|
|
|
value_estimates = {k: float(v) for k, v in value_estimates.items()}
|
|
|
|
# If we're done, reassign all of the value estimates that need terminal states.
|
|
if done:
|
|
for k in value_estimates:
|
|
if self.reward_signals[k].use_terminal_states:
|
|
value_estimates[k] = 0.0
|
|
|
|
return value_estimates
|
|
|
|
def create_reward_signals(self, reward_signal_configs):
|
|
"""
|
|
Create reward signals
|
|
:param reward_signal_configs: Reward signal config.
|
|
"""
|
|
self.reward_signals = {}
|
|
# Create reward signals
|
|
for reward_signal, config in reward_signal_configs.items():
|
|
self.reward_signals[reward_signal] = create_reward_signal(
|
|
self.policy, reward_signal, config
|
|
)
|
|
self.update_dict.update(self.reward_signals[reward_signal].update_dict)
|
|
|
|
def _execute_model(self, feed_dict, out_dict):
|
|
"""
|
|
Executes model.
|
|
:param feed_dict: Input dictionary mapping nodes to input data.
|
|
:param out_dict: Output dictionary mapping names to nodes.
|
|
:return: Dictionary mapping names to input data.
|
|
"""
|
|
network_out = self.sess.run(list(out_dict.values()), feed_dict=feed_dict)
|
|
run_out = dict(zip(list(out_dict.keys()), network_out))
|
|
return run_out
|