您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
263 行
9.3 KiB
263 行
9.3 KiB
using System;
|
|
using System.Collections.Generic;
|
|
using Unity.Barracuda;
|
|
using Unity.MLAgents.Actuators;
|
|
using Unity.MLAgents.Inference;
|
|
using Unity.MLAgents.Policies;
|
|
using Unity.MLAgents.Sensors;
|
|
using UnityEngine;
|
|
using UnityEngine.Analytics;
|
|
|
|
#if UNITY_EDITOR
|
|
using UnityEditor;
|
|
using UnityEditor.Analytics;
|
|
#endif
|
|
|
|
|
|
namespace Unity.MLAgents.Analytics
|
|
{
|
|
internal class InferenceAnalytics
|
|
{
|
|
const string k_VendorKey = "unity.ml-agents";
|
|
const string k_EventName = "ml_agents_inferencemodelset";
|
|
|
|
/// <summary>
|
|
/// Whether or not we've registered this particular event yet
|
|
/// </summary>
|
|
static bool s_EventRegistered = false;
|
|
|
|
/// <summary>
|
|
/// Hourly limit for this event name
|
|
/// </summary>
|
|
const int k_MaxEventsPerHour = 1000;
|
|
|
|
/// <summary>
|
|
/// Maximum number of items in this event.
|
|
/// </summary>
|
|
const int k_MaxNumberOfElements = 1000;
|
|
|
|
/// <summary>
|
|
/// Models that we've already sent events for.
|
|
/// </summary>
|
|
private static HashSet<NNModel> s_SentModels;
|
|
|
|
static bool EnableAnalytics()
|
|
{
|
|
if (s_EventRegistered)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
#if UNITY_EDITOR
|
|
AnalyticsResult result = EditorAnalytics.RegisterEventWithLimit(k_EventName, k_MaxEventsPerHour, k_MaxNumberOfElements, k_VendorKey);
|
|
#else
|
|
AnalyticsResult result = AnalyticsResult.UnsupportedPlatform;
|
|
#endif
|
|
if (result == AnalyticsResult.Ok)
|
|
{
|
|
s_EventRegistered = true;
|
|
}
|
|
|
|
if (s_EventRegistered && s_SentModels == null)
|
|
{
|
|
s_SentModels = new HashSet<NNModel>();
|
|
}
|
|
|
|
return s_EventRegistered;
|
|
}
|
|
|
|
public static bool IsAnalyticsEnabled()
|
|
{
|
|
#if UNITY_EDITOR
|
|
return EditorAnalytics.enabled;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/// <summary>
|
|
/// Send an analytics event for the NNModel when it is set up for inference.
|
|
/// No events will be sent if analytics are disabled, and at most one event
|
|
/// will be sent per model instance.
|
|
/// </summary>
|
|
/// <param name="nnModel">The NNModel being used for inference.</param>
|
|
/// <param name="behaviorName">The BehaviorName of the Agent using the model</param>
|
|
/// <param name="inferenceDevice">Whether inference is being performed on the CPU or GPU</param>
|
|
/// <param name="sensors">List of ISensors for the Agent. Used to generate information about the observation space.</param>
|
|
/// <param name="actionSpec">ActionSpec for the Agent. Used to generate information about the action space.</param>
|
|
/// <returns></returns>
|
|
public static void InferenceModelSet(
|
|
NNModel nnModel,
|
|
string behaviorName,
|
|
InferenceDevice inferenceDevice,
|
|
IList<ISensor> sensors,
|
|
ActionSpec actionSpec
|
|
)
|
|
{
|
|
// The event shouldn't be able to report if this is disabled but if we know we're not going to report
|
|
// Lets early out and not waste time gathering all the data
|
|
if (!IsAnalyticsEnabled())
|
|
return;
|
|
|
|
if (!EnableAnalytics())
|
|
return;
|
|
|
|
var added = s_SentModels.Add(nnModel);
|
|
|
|
if (!added)
|
|
{
|
|
// We previously added this model. Exit so we don't resend.
|
|
return;
|
|
}
|
|
|
|
var data = GetEventForModel(nnModel, behaviorName, inferenceDevice, sensors, actionSpec);
|
|
// Note - to debug, use JsonUtility.ToJson on the event.
|
|
// Debug.Log(JsonUtility.ToJson(data, true));
|
|
#if UNITY_EDITOR
|
|
EditorAnalytics.SendEventWithLimit(k_EventName, data);
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generate an InferenceEvent for the model.
|
|
/// </summary>
|
|
/// <param name="nnModel"></param>
|
|
/// <param name="behaviorName"></param>
|
|
/// <param name="inferenceDevice"></param>
|
|
/// <param name="sensors"></param>
|
|
/// <param name="actionSpec"></param>
|
|
/// <returns></returns>
|
|
internal static InferenceEvent GetEventForModel(
|
|
NNModel nnModel,
|
|
string behaviorName,
|
|
InferenceDevice inferenceDevice,
|
|
IList<ISensor> sensors,
|
|
ActionSpec actionSpec
|
|
)
|
|
{
|
|
var barracudaModel = ModelLoader.Load(nnModel);
|
|
var inferenceEvent = new InferenceEvent();
|
|
|
|
// Hash the behavior name so that there's no concern about PII or "secret" data being leaked.
|
|
var behaviorNameHash = Hash128.Compute(behaviorName);
|
|
inferenceEvent.BehaviorName = behaviorNameHash.ToString();
|
|
|
|
inferenceEvent.BarracudaModelSource = barracudaModel.IrSource;
|
|
inferenceEvent.BarracudaModelVersion = barracudaModel.IrVersion;
|
|
inferenceEvent.BarracudaModelProducer = barracudaModel.ProducerName;
|
|
inferenceEvent.MemorySize = (int)barracudaModel.GetTensorByName(TensorNames.MemorySize)[0];
|
|
inferenceEvent.InferenceDevice = (int)inferenceDevice;
|
|
|
|
if (barracudaModel.ProducerName == "Script")
|
|
{
|
|
// .nn files don't have these fields set correctly. Assign some placeholder values.
|
|
inferenceEvent.BarracudaModelSource = "NN";
|
|
inferenceEvent.BarracudaModelProducer = "tensorflow_to_barracuda.py";
|
|
}
|
|
|
|
#if UNITY_2019_3_OR_NEWER && UNITY_EDITOR
|
|
var barracudaPackageInfo = UnityEditor.PackageManager.PackageInfo.FindForAssembly(typeof(Tensor).Assembly);
|
|
inferenceEvent.BarracudaPackageVersion = barracudaPackageInfo.version;
|
|
#else
|
|
inferenceEvent.BarracudaPackageVersion = null;
|
|
#endif
|
|
|
|
inferenceEvent.ActionSpec = EventActionSpec.FromActionSpec(actionSpec);
|
|
inferenceEvent.ObservationSpecs = new List<EventObservationSpec>(sensors.Count);
|
|
foreach (var sensor in sensors)
|
|
{
|
|
inferenceEvent.ObservationSpecs.Add(EventObservationSpec.FromSensor(sensor));
|
|
}
|
|
|
|
inferenceEvent.TotalWeightSizeBytes = GetModelWeightSize(barracudaModel);
|
|
inferenceEvent.ModelHash = GetModelHash(barracudaModel);
|
|
return inferenceEvent;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Compute the total model weight size in bytes.
|
|
/// This corresponds to the "Total weight size" display in the Barracuda inspector,
|
|
/// and the calculations are the same.
|
|
/// </summary>
|
|
/// <param name="barracudaModel"></param>
|
|
/// <returns></returns>
|
|
static long GetModelWeightSize(Model barracudaModel)
|
|
{
|
|
long totalWeightsSizeInBytes = 0;
|
|
for (var l = 0; l < barracudaModel.layers.Count; ++l)
|
|
{
|
|
for (var d = 0; d < barracudaModel.layers[l].datasets.Length; ++d)
|
|
{
|
|
totalWeightsSizeInBytes += barracudaModel.layers[l].datasets[d].length;
|
|
}
|
|
}
|
|
return totalWeightsSizeInBytes;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Wrapper around Hash128 that supports Append(float[], int, int)
|
|
/// </summary>
|
|
struct MLAgentsHash128
|
|
{
|
|
private Hash128 m_Hash;
|
|
|
|
public void Append(float[] values, int count)
|
|
{
|
|
if (values == null)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Pre-2020 versions of Unity don't have Hash128.Append() (can only hash strings and scalars)
|
|
// For these versions, we'll hash element by element.
|
|
#if UNITY_2020_1_OR_NEWER
|
|
m_Hash.Append(values, 0, count);
|
|
#else
|
|
for (var i = 0; i < count; i++)
|
|
{
|
|
var tempHash = new Hash128();
|
|
HashUtilities.ComputeHash128(ref values[i], ref tempHash);
|
|
HashUtilities.AppendHash(ref tempHash, ref m_Hash);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
public void Append(string value)
|
|
{
|
|
var tempHash = Hash128.Compute(value);
|
|
HashUtilities.AppendHash(ref tempHash, ref m_Hash);
|
|
}
|
|
|
|
public override string ToString()
|
|
{
|
|
return m_Hash.ToString();
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Compute a hash of the model's layer data and return it as a string.
|
|
/// A subset of the layer weights are used for performance.
|
|
/// This increases the chance of a collision, but this should still be extremely rare.
|
|
/// </summary>
|
|
/// <param name="barracudaModel"></param>
|
|
/// <returns></returns>
|
|
static string GetModelHash(Model barracudaModel)
|
|
{
|
|
var hash = new MLAgentsHash128();
|
|
|
|
// Limit the max number of float bytes that we hash for performance.
|
|
const int kMaxFloats = 256;
|
|
|
|
foreach (var layer in barracudaModel.layers)
|
|
{
|
|
hash.Append(layer.name);
|
|
var numFloatsToHash = Mathf.Min(layer.weights.Length, kMaxFloats);
|
|
hash.Append(layer.weights, numFloatsToHash);
|
|
}
|
|
|
|
return hash.ToString();
|
|
}
|
|
}
|
|
}
|