Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

479 行
20 KiB

import atexit
from distutils.version import StrictVersion
import numpy as np
import os
import subprocess
from typing import Dict, List, Optional, Tuple, Mapping as MappingType
import mlagents_envs
from mlagents_envs.logging_util import get_logger
from mlagents_envs.side_channel.side_channel import SideChannel
from mlagents_envs.side_channel.side_channel_manager import SideChannelManager
from mlagents_envs import env_utils
from mlagents_envs.base_env import (
BaseEnv,
DecisionSteps,
TerminalSteps,
BehaviorSpec,
BehaviorName,
AgentId,
BehaviorMapping,
)
from mlagents_envs.timers import timed, hierarchical_timer
from mlagents_envs.exception import (
UnityEnvironmentException,
UnityActionException,
UnityTimeOutException,
UnityCommunicatorStoppedException,
)
from mlagents_envs.communicator_objects.command_pb2 import STEP, RESET
from mlagents_envs.rpc_utils import behavior_spec_from_proto, steps_from_proto
from mlagents_envs.communicator_objects.unity_rl_input_pb2 import UnityRLInputProto
from mlagents_envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutputProto
from mlagents_envs.communicator_objects.agent_action_pb2 import AgentActionProto
from mlagents_envs.communicator_objects.unity_output_pb2 import UnityOutputProto
from mlagents_envs.communicator_objects.capabilities_pb2 import UnityRLCapabilitiesProto
from mlagents_envs.communicator_objects.unity_rl_initialization_input_pb2 import (
UnityRLInitializationInputProto,
)
from mlagents_envs.communicator_objects.unity_input_pb2 import UnityInputProto
from .rpc_communicator import RpcCommunicator
import signal
logger = get_logger(__name__)
class UnityEnvironment(BaseEnv):
# Communication protocol version.
# When connecting to C#, this must be compatible with Academy.k_ApiVersion.
# We follow semantic versioning on the communication version, so existing
# functionality will work as long the major versions match.
# This should be changed whenever a change is made to the communication protocol.
# Revision history:
# * 1.0.0 - initial version
# * 1.1.0 - support concatenated PNGs for compressed observations.
API_VERSION = "1.1.0"
# Default port that the editor listens on. If an environment executable
# isn't specified, this port will be used.
DEFAULT_EDITOR_PORT = 5004
# Default base port for environments. Each environment will be offset from this
# by it's worker_id.
BASE_ENVIRONMENT_PORT = 5005
# Command line argument used to pass the port to the executable environment.
_PORT_COMMAND_LINE_ARG = "--mlagents-port"
@staticmethod
def _raise_version_exception(unity_com_ver: str) -> None:
raise UnityEnvironmentException(
f"The communication API version is not compatible between Unity and python. "
f"Python API: {UnityEnvironment.API_VERSION}, Unity API: {unity_com_ver}.\n "
f"Please find the versions that work best together from our release page.\n"
"https://github.com/Unity-Technologies/ml-agents/releases"
)
@staticmethod
def _check_communication_compatibility(
unity_com_ver: str, python_api_version: str, unity_package_version: str
) -> bool:
unity_communicator_version = StrictVersion(unity_com_ver)
api_version = StrictVersion(python_api_version)
if unity_communicator_version.version[0] == 0:
if (
unity_communicator_version.version[0] != api_version.version[0]
or unity_communicator_version.version[1] != api_version.version[1]
):
# Minor beta versions differ.
return False
elif unity_communicator_version.version[0] != api_version.version[0]:
# Major versions mismatch.
return False
elif unity_communicator_version.version[1] != api_version.version[1]:
# Non-beta minor versions mismatch. Log a warning but allow execution to continue.
logger.warning(
f"WARNING: The communication API versions between Unity and python differ at the minor version level. "
f"Python API: {python_api_version}, Unity API: {unity_communicator_version}.\n"
f"This means that some features may not work unless you upgrade the package with the lower version."
f"Please find the versions that work best together from our release page.\n"
"https://github.com/Unity-Technologies/ml-agents/releases"
)
else:
logger.info(
f"Connected to Unity environment with package version {unity_package_version} "
f"and communication version {unity_com_ver}"
)
return True
@staticmethod
def _get_capabilities_proto() -> UnityRLCapabilitiesProto:
capabilities = UnityRLCapabilitiesProto()
capabilities.baseRLCapabilities = True
capabilities.concatenatedPngObservations = True
return capabilities
@staticmethod
def _warn_csharp_base_capabilities(
caps: UnityRLCapabilitiesProto, unity_package_ver: str, python_package_ver: str
) -> None:
if not caps.baseRLCapabilities:
logger.warning(
"WARNING: The Unity process is not running with the expected base Reinforcement Learning"
" capabilities. Please be sure upgrade the Unity Package to a version that is compatible with this "
"python package.\n"
f"Python package version: {python_package_ver}, C# package version: {unity_package_ver}"
f"Please find the versions that work best together from our release page.\n"
"https://github.com/Unity-Technologies/ml-agents/releases"
)
def __init__(
self,
file_name: Optional[str] = None,
worker_id: int = 0,
base_port: Optional[int] = None,
seed: int = 0,
no_graphics: bool = False,
timeout_wait: int = 60,
additional_args: Optional[List[str]] = None,
side_channels: Optional[List[SideChannel]] = None,
log_folder: Optional[str] = None,
):
"""
Starts a new unity environment and establishes a connection with the environment.
Notice: Currently communication between Unity and Python takes place over an open socket without authentication.
Ensure that the network where training takes place is secure.
:string file_name: Name of Unity environment binary.
:int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this.
If no environment is specified (i.e. file_name is None), the DEFAULT_EDITOR_PORT will be used.
:int worker_id: Offset from base_port. Used for training multiple environments simultaneously.
:bool no_graphics: Whether to run the Unity simulator in no-graphics mode
:int timeout_wait: Time (in seconds) to wait for connection from environment.
:list args: Addition Unity command line arguments
:list side_channels: Additional side channel for no-rl communication with Unity
:str log_folder: Optional folder to write the Unity Player log file into. Requires absolute path.
"""
atexit.register(self._close)
self._additional_args = additional_args or []
self._no_graphics = no_graphics
# If base port is not specified, use BASE_ENVIRONMENT_PORT if we have
# an environment, otherwise DEFAULT_EDITOR_PORT
if base_port is None:
base_port = (
self.BASE_ENVIRONMENT_PORT if file_name else self.DEFAULT_EDITOR_PORT
)
self._port = base_port + worker_id
self._buffer_size = 12000
# If true, this means the environment was successfully loaded
self._loaded = False
# The process that is started. If None, no process was started
self._proc1 = None
self._timeout_wait: int = timeout_wait
self._communicator = self._get_communicator(worker_id, base_port, timeout_wait)
self._worker_id = worker_id
self._side_channel_manager = SideChannelManager(side_channels)
self._log_folder = log_folder
# If the environment name is None, a new environment will not be launched
# and the communicator will directly try to connect to an existing unity environment.
# If the worker-id is not 0 and the environment name is None, an error is thrown
if file_name is None and worker_id != 0:
raise UnityEnvironmentException(
"If the environment name is None, "
"the worker-id must be 0 in order to connect with the Editor."
)
if file_name is not None:
try:
self._proc1 = env_utils.launch_executable(
file_name, self._executable_args()
)
except UnityEnvironmentException:
self._close(0)
raise
else:
logger.info(
f"Listening on port {self._port}. "
f"Start training by pressing the Play button in the Unity Editor."
)
self._loaded = True
rl_init_parameters_in = UnityRLInitializationInputProto(
seed=seed,
communication_version=self.API_VERSION,
package_version=mlagents_envs.__version__,
capabilities=UnityEnvironment._get_capabilities_proto(),
)
try:
aca_output = self._send_academy_parameters(rl_init_parameters_in)
aca_params = aca_output.rl_initialization_output
except UnityTimeOutException:
self._close(0)
raise
if not UnityEnvironment._check_communication_compatibility(
aca_params.communication_version,
UnityEnvironment.API_VERSION,
aca_params.package_version,
):
self._close(0)
UnityEnvironment._raise_version_exception(aca_params.communication_version)
UnityEnvironment._warn_csharp_base_capabilities(
aca_params.capabilities,
aca_params.package_version,
UnityEnvironment.API_VERSION,
)
self._env_state: Dict[str, Tuple[DecisionSteps, TerminalSteps]] = {}
self._env_specs: Dict[str, BehaviorSpec] = {}
self._env_actions: Dict[str, np.ndarray] = {}
self._is_first_message = True
self._update_behavior_specs(aca_output)
@staticmethod
def _get_communicator(worker_id, base_port, timeout_wait):
return RpcCommunicator(worker_id, base_port, timeout_wait)
def _executable_args(self) -> List[str]:
args: List[str] = []
if self._no_graphics:
args += ["-nographics", "-batchmode"]
args += [UnityEnvironment._PORT_COMMAND_LINE_ARG, str(self._port)]
if self._log_folder:
log_file_path = os.path.join(
self._log_folder, f"Player-{self._worker_id}.log"
)
args += ["-logFile", log_file_path]
# Add in arguments passed explicitly by the user.
args += self._additional_args
return args
def _update_behavior_specs(self, output: UnityOutputProto) -> None:
init_output = output.rl_initialization_output
for brain_param in init_output.brain_parameters:
# Each BrainParameter in the rl_initialization_output should have at least one AgentInfo
# Get that agent, because we need some of its observations.
agent_infos = output.rl_output.agentInfos[brain_param.brain_name]
if agent_infos.value:
agent = agent_infos.value[0]
new_spec = behavior_spec_from_proto(brain_param, agent)
self._env_specs[brain_param.brain_name] = new_spec
logger.info(f"Connected new brain:\n{brain_param.brain_name}")
def _update_state(self, output: UnityRLOutputProto) -> None:
"""
Collects experience information from all external brains in environment at current step.
"""
for brain_name in self._env_specs.keys():
if brain_name in output.agentInfos:
agent_info_list = output.agentInfos[brain_name].value
self._env_state[brain_name] = steps_from_proto(
agent_info_list, self._env_specs[brain_name]
)
else:
self._env_state[brain_name] = (
DecisionSteps.empty(self._env_specs[brain_name]),
TerminalSteps.empty(self._env_specs[brain_name]),
)
self._side_channel_manager.process_side_channel_message(output.side_channel)
def reset(self) -> None:
if self._loaded:
outputs = self._communicator.exchange(self._generate_reset_input())
if outputs is None:
raise UnityCommunicatorStoppedException("Communicator has exited.")
self._update_behavior_specs(outputs)
rl_output = outputs.rl_output
self._update_state(rl_output)
self._is_first_message = False
self._env_actions.clear()
else:
raise UnityEnvironmentException("No Unity environment is loaded.")
@timed
def step(self) -> None:
if self._is_first_message:
return self.reset()
if not self._loaded:
raise UnityEnvironmentException("No Unity environment is loaded.")
# fill the blanks for missing actions
for group_name in self._env_specs:
if group_name not in self._env_actions:
n_agents = 0
if group_name in self._env_state:
n_agents = len(self._env_state[group_name][0])
self._env_actions[group_name] = self._env_specs[
group_name
].create_empty_action(n_agents)
step_input = self._generate_step_input(self._env_actions)
with hierarchical_timer("communicator.exchange"):
outputs = self._communicator.exchange(step_input)
if outputs is None:
raise UnityCommunicatorStoppedException("Communicator has exited.")
self._update_behavior_specs(outputs)
rl_output = outputs.rl_output
self._update_state(rl_output)
self._env_actions.clear()
@property
def behavior_specs(self) -> MappingType[str, BehaviorSpec]:
return BehaviorMapping(self._env_specs)
def _assert_behavior_exists(self, behavior_name: str) -> None:
if behavior_name not in self._env_specs:
raise UnityActionException(
f"The group {behavior_name} does not correspond to an existing "
f"agent group in the environment"
)
def set_actions(self, behavior_name: BehaviorName, action: np.ndarray) -> None:
self._assert_behavior_exists(behavior_name)
if behavior_name not in self._env_state:
return
spec = self._env_specs[behavior_name]
expected_type = np.float32 if spec.is_action_continuous() else np.int32
expected_shape = (len(self._env_state[behavior_name][0]), spec.action_size)
if action.shape != expected_shape:
raise UnityActionException(
f"The behavior {behavior_name} needs an input of dimension "
f"{expected_shape} for (<number of agents>, <action size>) but "
f"received input of dimension {action.shape}"
)
if action.dtype != expected_type:
action = action.astype(expected_type)
self._env_actions[behavior_name] = action
def set_action_for_agent(
self, behavior_name: BehaviorName, agent_id: AgentId, action: np.ndarray
) -> None:
self._assert_behavior_exists(behavior_name)
if behavior_name not in self._env_state:
return
spec = self._env_specs[behavior_name]
expected_shape = (spec.action_size,)
if action.shape != expected_shape:
raise UnityActionException(
f"The Agent {agent_id} with BehaviorName {behavior_name} needs "
f"an input of dimension {expected_shape} but received input of "
f"dimension {action.shape}"
)
expected_type = np.float32 if spec.is_action_continuous() else np.int32
if action.dtype != expected_type:
action = action.astype(expected_type)
if behavior_name not in self._env_actions:
self._env_actions[behavior_name] = spec.create_empty_action(
len(self._env_state[behavior_name][0])
)
try:
index = np.where(self._env_state[behavior_name][0].agent_id == agent_id)[0][
0
]
except IndexError as ie:
raise IndexError(
"agent_id {} is did not request a decision at the previous step".format(
agent_id
)
) from ie
self._env_actions[behavior_name][index] = action
def get_steps(
self, behavior_name: BehaviorName
) -> Tuple[DecisionSteps, TerminalSteps]:
self._assert_behavior_exists(behavior_name)
return self._env_state[behavior_name]
def close(self):
"""
Sends a shutdown signal to the unity environment, and closes the socket connection.
"""
if self._loaded:
self._close()
else:
raise UnityEnvironmentException("No Unity environment is loaded.")
def _close(self, timeout: Optional[int] = None) -> None:
"""
Close the communicator and environment subprocess (if necessary).
:int timeout: [Optional] Number of seconds to wait for the environment to shut down before
force-killing it. Defaults to `self.timeout_wait`.
"""
if timeout is None:
timeout = self._timeout_wait
self._loaded = False
self._communicator.close()
if self._proc1 is not None:
# Wait a bit for the process to shutdown, but kill it if it takes too long
try:
self._proc1.wait(timeout=timeout)
signal_name = self._returncode_to_signal_name(self._proc1.returncode)
signal_name = f" ({signal_name})" if signal_name else ""
return_info = f"Environment shut down with return code {self._proc1.returncode}{signal_name}."
logger.info(return_info)
except subprocess.TimeoutExpired:
logger.info("Environment timed out shutting down. Killing...")
self._proc1.kill()
# Set to None so we don't try to close multiple times.
self._proc1 = None
@timed
def _generate_step_input(
self, vector_action: Dict[str, np.ndarray]
) -> UnityInputProto:
rl_in = UnityRLInputProto()
for b in vector_action:
n_agents = len(self._env_state[b][0])
if n_agents == 0:
continue
for i in range(n_agents):
action = AgentActionProto(vector_actions=vector_action[b][i])
rl_in.agent_actions[b].value.extend([action])
rl_in.command = STEP
rl_in.side_channel = bytes(
self._side_channel_manager.generate_side_channel_messages()
)
return self._wrap_unity_input(rl_in)
def _generate_reset_input(self) -> UnityInputProto:
rl_in = UnityRLInputProto()
rl_in.command = RESET
rl_in.side_channel = bytes(
self._side_channel_manager.generate_side_channel_messages()
)
return self._wrap_unity_input(rl_in)
def _send_academy_parameters(
self, init_parameters: UnityRLInitializationInputProto
) -> UnityOutputProto:
inputs = UnityInputProto()
inputs.rl_initialization_input.CopyFrom(init_parameters)
return self._communicator.initialize(inputs)
@staticmethod
def _wrap_unity_input(rl_input: UnityRLInputProto) -> UnityInputProto:
result = UnityInputProto()
result.rl_input.CopyFrom(rl_input)
return result
@staticmethod
def _returncode_to_signal_name(returncode: int) -> Optional[str]:
"""
Try to convert return codes into their corresponding signal name.
E.g. returncode_to_signal_name(-2) -> "SIGINT"
"""
try:
# A negative value -N indicates that the child was terminated by signal N (POSIX only).
s = signal.Signals(-returncode) # pylint: disable=no-member
return s.name
except Exception:
# Should generally be a ValueError, but catch everything just in case.
return None