您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
94 行
3.9 KiB
94 行
3.9 KiB
using System.Collections.Generic;
|
|
using Barracuda;
|
|
|
|
namespace MLAgents.InferenceBrain
|
|
{
|
|
/// <summary>
|
|
/// Mapping between the output tensor names and the method that will use the
|
|
/// output tensors and the Agents present in the batch to update their action, memories and
|
|
/// value estimates.
|
|
/// A TensorApplier implements a Dictionary of strings (node names) to an Action.
|
|
/// This action takes as input the tensor and the Dictionary of Agent to AgentInfo for
|
|
/// the current batch.
|
|
/// </summary>
|
|
public class TensorApplier
|
|
{
|
|
/// <summary>
|
|
/// A tensor Applier's Execute method takes a tensor and a Dictionary of Agent to AgentInfo.
|
|
/// Uses the data contained inside the tensor to modify the state of the Agent. The Tensors
|
|
/// are assumed to have the batch size on the first dimension and the agents to be ordered
|
|
/// the same way in the dictionary and in the tensor.
|
|
/// </summary>
|
|
public interface IApplier
|
|
{
|
|
/// <summary>
|
|
/// Applies the values in the Tensor to the Agents present in the agentInfos
|
|
/// </summary>
|
|
/// <param name="tensorProxy">
|
|
/// The Tensor containing the data to be applied to the Agents
|
|
/// </param>
|
|
/// <param name="agents">
|
|
/// List of Agents that will receive the values of the Tensor.
|
|
/// </param>
|
|
void Apply(TensorProxy tensorProxy, IEnumerable<Agent> agents);
|
|
}
|
|
|
|
private readonly Dictionary<string, IApplier> m_Dict = new Dictionary<string, IApplier>();
|
|
|
|
/// <summary>
|
|
/// Returns a new TensorAppliers object.
|
|
/// </summary>
|
|
/// <param name="bp"> The BrainParameters used to determine what Appliers will be
|
|
/// used</param>
|
|
/// <param name="seed"> The seed the Appliers will be initialized with.</param>
|
|
/// <param name="allocator"> Tensor allocator</param>
|
|
/// <param name="barracudaModel"></param>
|
|
public TensorApplier(
|
|
BrainParameters bp, int seed, ITensorAllocator allocator, object barracudaModel = null)
|
|
{
|
|
m_Dict[TensorNames.ValueEstimateOutput] = new ValueEstimateApplier();
|
|
if (bp.vectorActionSpaceType == SpaceType.Continuous)
|
|
{
|
|
m_Dict[TensorNames.ActionOutput] = new ContinuousActionOutputApplier();
|
|
}
|
|
else
|
|
{
|
|
m_Dict[TensorNames.ActionOutput] =
|
|
new DiscreteActionOutputApplier(bp.vectorActionSize, seed, allocator);
|
|
}
|
|
m_Dict[TensorNames.RecurrentOutput] = new MemoryOutputApplier();
|
|
|
|
if (barracudaModel != null)
|
|
{
|
|
var model = (Model)barracudaModel;
|
|
|
|
for (var i = 0; i < model?.memories.Length; i++)
|
|
{
|
|
m_Dict[model.memories[i].output] =
|
|
new BarracudaMemoryOutputApplier(model.memories.Length, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Updates the state of the agents based on the data present in the tensor.
|
|
/// </summary>
|
|
/// <param name="tensors"> Enumerable of tensors containing the data.</param>
|
|
/// <param name="agents"> List of Agents that will be updated using the tensor's data</param>
|
|
/// <exception cref="UnityAgentsException"> One of the tensor does not have an
|
|
/// associated applier.</exception>
|
|
public void ApplyTensors(
|
|
IEnumerable<TensorProxy> tensors, IEnumerable<Agent> agents)
|
|
{
|
|
foreach (var tensor in tensors)
|
|
{
|
|
if (!m_Dict.ContainsKey(tensor.name))
|
|
{
|
|
throw new UnityAgentsException(
|
|
$"Unknown tensorProxy expected as output : {tensor.name}");
|
|
}
|
|
m_Dict[tensor.name].Apply(tensor, agents);
|
|
}
|
|
}
|
|
}
|
|
}
|