Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

109 行
3.5 KiB

from typing import List, Dict
from mlagents.torch_utils import torch, nn
from mlagents.trainers.torch.layers import (
linear_layer,
LinearEncoder,
Initialization,
Swish,
)
from collections import defaultdict
class ValueHeads(nn.Module):
def __init__(self, stream_names: List[str], input_size: int, output_size: int = 1):
super().__init__()
self.stream_names = stream_names
_value_heads = {}
for name in stream_names:
value = linear_layer(input_size, output_size)
_value_heads[name] = value
self.value_heads = nn.ModuleDict(_value_heads)
def forward(self, hidden: torch.Tensor) -> Dict[str, torch.Tensor]:
value_outputs = {}
for stream_name, head in self.value_heads.items():
value_outputs[stream_name] = head(hidden).squeeze(-1)
return value_outputs
class ValueHeadsHyperNetwork(nn.Module):
def __init__(
self,
num_layers,
layer_size,
num_goals,
stream_names: List[str],
input_size: int,
output_size: int = 1,
):
super().__init__()
self.stream_names = stream_names
self._num_goals = num_goals
self.input_size = input_size
self.output_size = output_size
self.streams_size = len(stream_names)
layers = []
layers.append(
linear_layer(
num_goals,
layer_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.0,
bias_init=Initialization.Zero,
)
)
layers.append(Swish())
for _ in range(num_layers - 1):
layers.append(
linear_layer(
layer_size,
layer_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.0,
bias_init=Initialization.Zero,
)
)
layers.append(Swish())
flat_output = linear_layer(
layer_size,
input_size * output_size * self.streams_size
+ self.output_size * self.streams_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=0.1,
bias_init=Initialization.Zero,
)
self.hypernet = torch.nn.Sequential(*layers, flat_output)
def forward(
self, hidden: torch.Tensor, goal: torch.Tensor
) -> Dict[str, torch.Tensor]:
goal_onehot = torch.nn.functional.one_hot(
goal[0].long(), self._num_goals
).float()
# (b, i * o * streams + o * streams)
flat_output_weights = self.hypernet(goal_onehot)
b = hidden.size(0)
output_weights, output_bias = torch.split(
flat_output_weights,
self.streams_size * self.input_size * self.output_size,
dim=-1,
)
output_weights = torch.reshape(
output_weights, (self.streams_size, b, self.input_size, self.output_size)
)
output_bias = torch.reshape(
output_bias, (self.streams_size, b, self.output_size)
)
output_bias = output_bias.unsqueeze(dim=2)
value_outputs = {}
for stream_name, out_w, out_b in zip(
self.stream_names, output_weights, output_bias
):
inp_out_w = torch.bmm(hidden.unsqueeze(dim=1), out_w)
inp_out_w_out_b = inp_out_w + out_b
value_outputs[stream_name] = inp_out_w_out_b.squeeze()
return value_outputs