您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
109 行
3.5 KiB
109 行
3.5 KiB
from typing import List, Dict
|
|
|
|
from mlagents.torch_utils import torch, nn
|
|
from mlagents.trainers.torch.layers import (
|
|
linear_layer,
|
|
LinearEncoder,
|
|
Initialization,
|
|
Swish,
|
|
)
|
|
|
|
from collections import defaultdict
|
|
|
|
|
|
class ValueHeads(nn.Module):
|
|
def __init__(self, stream_names: List[str], input_size: int, output_size: int = 1):
|
|
super().__init__()
|
|
self.stream_names = stream_names
|
|
_value_heads = {}
|
|
|
|
for name in stream_names:
|
|
value = linear_layer(input_size, output_size)
|
|
_value_heads[name] = value
|
|
self.value_heads = nn.ModuleDict(_value_heads)
|
|
|
|
def forward(self, hidden: torch.Tensor) -> Dict[str, torch.Tensor]:
|
|
value_outputs = {}
|
|
for stream_name, head in self.value_heads.items():
|
|
value_outputs[stream_name] = head(hidden).squeeze(-1)
|
|
return value_outputs
|
|
|
|
|
|
class ValueHeadsHyperNetwork(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_layers,
|
|
layer_size,
|
|
num_goals,
|
|
stream_names: List[str],
|
|
input_size: int,
|
|
output_size: int = 1,
|
|
):
|
|
super().__init__()
|
|
self.stream_names = stream_names
|
|
self._num_goals = num_goals
|
|
self.input_size = input_size
|
|
self.output_size = output_size
|
|
self.streams_size = len(stream_names)
|
|
layers = []
|
|
layers.append(
|
|
linear_layer(
|
|
num_goals,
|
|
layer_size,
|
|
kernel_init=Initialization.KaimingHeNormal,
|
|
kernel_gain=1.0,
|
|
bias_init=Initialization.Zero,
|
|
)
|
|
)
|
|
layers.append(Swish())
|
|
for _ in range(num_layers - 1):
|
|
layers.append(
|
|
linear_layer(
|
|
layer_size,
|
|
layer_size,
|
|
kernel_init=Initialization.KaimingHeNormal,
|
|
kernel_gain=1.0,
|
|
bias_init=Initialization.Zero,
|
|
)
|
|
)
|
|
layers.append(Swish())
|
|
flat_output = linear_layer(
|
|
layer_size,
|
|
input_size * output_size * self.streams_size
|
|
+ self.output_size * self.streams_size,
|
|
kernel_init=Initialization.KaimingHeNormal,
|
|
kernel_gain=0.1,
|
|
bias_init=Initialization.Zero,
|
|
)
|
|
self.hypernet = torch.nn.Sequential(*layers, flat_output)
|
|
|
|
def forward(
|
|
self, hidden: torch.Tensor, goal: torch.Tensor
|
|
) -> Dict[str, torch.Tensor]:
|
|
goal_onehot = torch.nn.functional.one_hot(
|
|
goal[0].long(), self._num_goals
|
|
).float()
|
|
# (b, i * o * streams + o * streams)
|
|
flat_output_weights = self.hypernet(goal_onehot)
|
|
b = hidden.size(0)
|
|
|
|
output_weights, output_bias = torch.split(
|
|
flat_output_weights,
|
|
self.streams_size * self.input_size * self.output_size,
|
|
dim=-1,
|
|
)
|
|
output_weights = torch.reshape(
|
|
output_weights, (self.streams_size, b, self.input_size, self.output_size)
|
|
)
|
|
output_bias = torch.reshape(
|
|
output_bias, (self.streams_size, b, self.output_size)
|
|
)
|
|
output_bias = output_bias.unsqueeze(dim=2)
|
|
value_outputs = {}
|
|
for stream_name, out_w, out_b in zip(
|
|
self.stream_names, output_weights, output_bias
|
|
):
|
|
inp_out_w = torch.bmm(hidden.unsqueeze(dim=1), out_w)
|
|
inp_out_w_out_b = inp_out_w + out_b
|
|
value_outputs[stream_name] = inp_out_w_out_b.squeeze()
|
|
return value_outputs
|