Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

128 行
4.3 KiB

namespace Unity.MLAgents.Sensors
{
/// <summary>
/// The compression setting for visual/camera observations.
/// </summary>
public enum SensorCompressionType
{
/// <summary>
/// No compression. Data is preserved as float arrays.
/// </summary>
None,
/// <summary>
/// PNG format. Data will be stored in binary format.
/// </summary>
PNG
}
/// <summary>
/// The semantic meaning of the sensor.
/// </summary>
public enum SensorType
{
/// <summary>
/// Sensor represents an agent's observation.
/// </summary>
Observation,
/// <summary>
/// Sensor represents an agent's task/goal parameterization.
/// </summary>
Goal,
/// <summary>
/// Sensor represents one or more reward signals.
/// </summary>
Reward
}
/// <summary>
/// Sensor interface for generating observations.
/// </summary>
public interface ISensor
{
/// <summary>
/// Returns the size of the observations that will be generated.
/// For example, a sensor that observes the velocity of a rigid body (in 3D) would return
/// new {3}. A sensor that returns an RGB image would return new [] {Height, Width, 3}
/// </summary>
/// <returns>Size of the observations that will be generated.</returns>
int[] GetObservationShape();
/// <summary>
/// Write the observation data directly to the <see cref="ObservationWriter"/>.
/// Note that this (and <see cref="GetCompressedObservation"/>) may
/// be called multiple times per agent step, so should not mutate any internal state.
/// </summary>
/// <param name="writer">Where the observations will be written to.</param>
/// <returns>The number of elements written.</returns>
int Write(ObservationWriter writer);
/// <summary>
/// Return a compressed representation of the observation. For small observations,
/// this should generally not be implemented. However, compressing large observations
/// (such as visual results) can significantly improve model training time.
/// </summary>
/// <returns>Compressed observation.</returns>
byte[] GetCompressedObservation();
/// <summary>
/// Update any internal state of the sensor. This is called once per each agent step.
/// </summary>
void Update();
/// <summary>
/// Resets the internal state of the sensor. This is called at the end of an Agent's episode.
/// Most implementations can leave this empty.
/// </summary>
void Reset();
/// <summary>
/// Return the compression type being used. If no compression is used, return
/// <see cref="SensorCompressionType.None"/>.
/// </summary>
/// <returns>Compression type used by the sensor.</returns>
SensorCompressionType GetCompressionType();
/// <summary>
/// Get the name of the sensor. This is used to ensure deterministic sorting of the sensors
/// on an Agent, so the naming must be consistent across all sensors and agents.
/// </summary>
/// <returns>The name of the sensor.</returns>
string GetName();
/// <summary>
/// Get the semantic meaning of the sensor, i.e. whether it is an observation or other type
/// of data to be sent to the Agent.
/// </summary>
/// <returns>The type of the sensor.</returns>
SensorType GetSensorType();
}
/// <summary>
/// Helper methods to be shared by all classes that implement <see cref="ISensor"/>.
/// </summary>
public static class SensorExtensions
{
/// <summary>
/// Get the total number of elements in the ISensor's observation (i.e. the product of the
/// shape elements).
/// </summary>
/// <param name="sensor"></param>
/// <returns></returns>
public static int ObservationSize(this ISensor sensor)
{
var shape = sensor.GetObservationShape();
var count = 1;
foreach (var dim in shape)
{
count *= dim;
}
return count;
}
}
}