您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
159 行
5.6 KiB
159 行
5.6 KiB
using System.Collections.Generic;
|
|
using System.Linq;
|
|
using Barracuda;
|
|
using NUnit.Framework;
|
|
using UnityEngine;
|
|
using MLAgents.InferenceBrain;
|
|
|
|
namespace MLAgents.Tests
|
|
{
|
|
public class EditModeTestInternalBrainTensorGenerator
|
|
{
|
|
private class TestAgent : Agent
|
|
{
|
|
}
|
|
|
|
private Dictionary<Agent, AgentInfo> GetFakeAgentInfos()
|
|
{
|
|
var goA = new GameObject("goA");
|
|
var agentA = goA.AddComponent<TestAgent>();
|
|
var infoA = new AgentInfo()
|
|
{
|
|
stackedVectorObservation = (new[] {1f, 2f, 3f}).ToList(),
|
|
memories = null,
|
|
storedVectorActions = new[] {1f, 2f},
|
|
actionMasks = null,
|
|
};
|
|
var goB = new GameObject("goB");
|
|
var agentB = goB.AddComponent<TestAgent>();
|
|
var infoB = new AgentInfo()
|
|
{
|
|
stackedVectorObservation = (new[] {4f, 5f, 6f}).ToList(),
|
|
memories = (new[] {1f, 1f, 1f}).ToList(),
|
|
storedVectorActions = new[] {3f, 4f},
|
|
actionMasks = new[] {true, false, false, false, false},
|
|
};
|
|
|
|
return new Dictionary<Agent, AgentInfo>(){{agentA, infoA}, {agentB, infoB}};
|
|
}
|
|
|
|
[Test]
|
|
public void Construction()
|
|
{
|
|
var bp = new BrainParameters();
|
|
var alloc = new TensorCachingAllocator();
|
|
var tensorGenerator = new TensorGenerator(bp, 0, alloc);
|
|
Assert.IsNotNull(tensorGenerator);
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void GenerateBatchSize()
|
|
{
|
|
var inputTensor = new TensorProxy();
|
|
var alloc = new TensorCachingAllocator();
|
|
const int batchSize = 4;
|
|
var generator = new BatchSizeGenerator(alloc);
|
|
generator.Generate(inputTensor, batchSize, null);
|
|
Assert.IsNotNull(inputTensor.data);
|
|
Assert.AreEqual(inputTensor.data[0], batchSize);
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void GenerateSequenceLength()
|
|
{
|
|
var inputTensor = new TensorProxy();
|
|
var alloc = new TensorCachingAllocator();
|
|
const int batchSize = 4;
|
|
var generator = new SequenceLengthGenerator(alloc);
|
|
generator.Generate(inputTensor, batchSize, null);
|
|
Assert.IsNotNull(inputTensor.data);
|
|
Assert.AreEqual(inputTensor.data[0], 1);
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void GenerateVectorObservation()
|
|
{
|
|
var inputTensor = new TensorProxy()
|
|
{
|
|
shape = new long[] {2, 3}
|
|
};
|
|
const int batchSize = 4;
|
|
var agentInfos = GetFakeAgentInfos();
|
|
var alloc = new TensorCachingAllocator();
|
|
var generator = new VectorObservationGenerator(alloc);
|
|
generator.Generate(inputTensor, batchSize, agentInfos);
|
|
Assert.IsNotNull(inputTensor.data);
|
|
Assert.AreEqual(inputTensor.data[0, 0], 1);
|
|
Assert.AreEqual(inputTensor.data[0, 2], 3);
|
|
Assert.AreEqual(inputTensor.data[1, 0], 4);
|
|
Assert.AreEqual(inputTensor.data[1, 2], 6);
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void GenerateRecurrentInput()
|
|
{
|
|
var inputTensor = new TensorProxy()
|
|
{
|
|
shape = new long[] {2, 5}
|
|
};
|
|
const int batchSize = 4;
|
|
var agentInfos = GetFakeAgentInfos();
|
|
var alloc = new TensorCachingAllocator();
|
|
var generator = new RecurrentInputGenerator(alloc);
|
|
generator.Generate(inputTensor, batchSize, agentInfos);
|
|
Assert.IsNotNull(inputTensor.data);
|
|
Assert.AreEqual(inputTensor.data[0, 0], 0);
|
|
Assert.AreEqual(inputTensor.data[0, 4], 0);
|
|
Assert.AreEqual(inputTensor.data[1, 0], 1);
|
|
Assert.AreEqual(inputTensor.data[1, 4], 0);
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void GeneratePreviousActionInput()
|
|
{
|
|
var inputTensor = new TensorProxy()
|
|
{
|
|
shape = new long[] {2, 2},
|
|
valueType = TensorProxy.TensorType.Integer
|
|
};
|
|
const int batchSize = 4;
|
|
var agentInfos = GetFakeAgentInfos();
|
|
var alloc = new TensorCachingAllocator();
|
|
var generator = new PreviousActionInputGenerator(alloc);
|
|
|
|
generator.Generate(inputTensor, batchSize, agentInfos);
|
|
Assert.IsNotNull(inputTensor.data);
|
|
Assert.AreEqual(inputTensor.data[0, 0], 1);
|
|
Assert.AreEqual(inputTensor.data[0, 1], 2);
|
|
Assert.AreEqual(inputTensor.data[1, 0], 3);
|
|
Assert.AreEqual(inputTensor.data[1, 1], 4);
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void GenerateActionMaskInput()
|
|
{
|
|
var inputTensor = new TensorProxy()
|
|
{
|
|
shape = new long[] {2, 5},
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
const int batchSize = 4;
|
|
var agentInfos = GetFakeAgentInfos();
|
|
var alloc = new TensorCachingAllocator();
|
|
var generator = new ActionMaskInputGenerator(alloc);
|
|
generator.Generate(inputTensor, batchSize, agentInfos);
|
|
Assert.IsNotNull(inputTensor.data);
|
|
Assert.AreEqual(inputTensor.data[0, 0], 1);
|
|
Assert.AreEqual(inputTensor.data[0, 4], 1);
|
|
Assert.AreEqual(inputTensor.data[1, 0], 0);
|
|
Assert.AreEqual(inputTensor.data[1, 4], 1);
|
|
alloc.Dispose();
|
|
}
|
|
}
|
|
}
|