您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
435 行
16 KiB
435 行
16 KiB
import pytest
|
|
import attr
|
|
|
|
|
|
from mlagents.trainers.tests.simple_test_envs import (
|
|
SimpleEnvironment,
|
|
HybridEnvironment,
|
|
MemoryEnvironment,
|
|
RecordEnvironment,
|
|
)
|
|
|
|
from mlagents.trainers.demo_loader import write_demo
|
|
|
|
from mlagents.trainers.settings import (
|
|
NetworkSettings,
|
|
SelfPlaySettings,
|
|
BehavioralCloningSettings,
|
|
GAILSettings,
|
|
RewardSignalType,
|
|
EncoderType,
|
|
FrameworkType,
|
|
)
|
|
|
|
from mlagents_envs.communicator_objects.demonstration_meta_pb2 import (
|
|
DemonstrationMetaProto,
|
|
)
|
|
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
|
|
from mlagents_envs.communicator_objects.space_type_pb2 import discrete, continuous
|
|
|
|
from mlagents.trainers.tests.dummy_config import ppo_dummy_config, sac_dummy_config
|
|
from mlagents.trainers.tests.check_env_trains import (
|
|
check_environment_trains,
|
|
default_reward_processor,
|
|
)
|
|
|
|
BRAIN_NAME = "1D"
|
|
|
|
PPO_TORCH_CONFIG = attr.evolve(ppo_dummy_config(), framework=FrameworkType.PYTORCH)
|
|
SAC_TORCH_CONFIG = attr.evolve(sac_dummy_config(), framework=FrameworkType.PYTORCH)
|
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# def test_simple_ppo(use_discrete):
|
|
# env = SimpleEnvironment([BRAIN_NAME], use_discrete=use_discrete)
|
|
# config = attr.evolve(PPO_CONFIG)
|
|
# _check_environment_trains(env, {BRAIN_NAME: config})
|
|
|
|
|
|
def test_hybrid_ppo():
|
|
env = HybridEnvironment(
|
|
[BRAIN_NAME], continuous_action_size=1, discrete_action_size=1, step_size=0.8
|
|
)
|
|
new_hyperparams = attr.evolve(
|
|
PPO_CONFIG.hyperparameters, batch_size=32, buffer_size=1280
|
|
)
|
|
config = attr.evolve(PPO_CONFIG, hyperparameters=new_hyperparams, max_steps=10000)
|
|
_check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0)
|
|
|
|
|
|
def test_conthybrid_ppo():
|
|
env = HybridEnvironment(
|
|
[BRAIN_NAME], continuous_action_size=1, discrete_action_size=0, step_size=0.8
|
|
)
|
|
config = attr.evolve(PPO_CONFIG)
|
|
_check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0)
|
|
|
|
|
|
def test_dischybrid_ppo():
|
|
env = HybridEnvironment(
|
|
[BRAIN_NAME], continuous_action_size=0, discrete_action_size=1, step_size=0.8
|
|
)
|
|
config = attr.evolve(PPO_CONFIG)
|
|
_check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0)
|
|
|
|
|
|
def test_3chybrid_ppo():
|
|
env = HybridEnvironment(
|
|
[BRAIN_NAME], continuous_action_size=2, discrete_action_size=1, step_size=0.8
|
|
)
|
|
new_hyperparams = attr.evolve(
|
|
PPO_CONFIG.hyperparameters, batch_size=128, buffer_size=1280, beta=0.01
|
|
)
|
|
config = attr.evolve(PPO_CONFIG, hyperparameters=new_hyperparams, max_steps=10000)
|
|
_check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0)
|
|
|
|
|
|
def test_3ddhybrid_ppo():
|
|
env = HybridEnvironment(
|
|
[BRAIN_NAME], continuous_action_size=1, discrete_action_size=2, step_size=0.8
|
|
)
|
|
new_hyperparams = attr.evolve(
|
|
PPO_CONFIG.hyperparameters, batch_size=128, buffer_size=1280, beta=0.05
|
|
)
|
|
config = attr.evolve(PPO_CONFIG, hyperparameters=new_hyperparams, max_steps=10000)
|
|
_check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0)
|
|
|
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# def test_2d_ppo(use_discrete):
|
|
# env = SimpleEnvironment(
|
|
# [BRAIN_NAME], use_discrete=use_discrete, action_size=2, step_size=0.8
|
|
# )
|
|
# new_hyperparams = attr.evolve(
|
|
# PPO_CONFIG.hyperparameters, batch_size=64, buffer_size=640
|
|
# )
|
|
# config = attr.evolve(PPO_CONFIG, hyperparameters=new_hyperparams, max_steps=10000)
|
|
# _check_environment_trains(env, {BRAIN_NAME: config})
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# @pytest.mark.parametrize("num_visual", [1, 2])
|
|
# def test_visual_ppo(num_visual, use_discrete):
|
|
# env = SimpleEnvironment(
|
|
# [BRAIN_NAME],
|
|
# use_discrete=use_discrete,
|
|
# num_visual=num_visual,
|
|
# num_vector=0,
|
|
# step_size=0.2,
|
|
# )
|
|
# new_hyperparams = attr.evolve(PPO_CONFIG.hyperparameters, learning_rate=3.0e-4)
|
|
# config = attr.evolve(PPO_CONFIG, hyperparameters=new_hyperparams)
|
|
# _check_environment_trains(env, {BRAIN_NAME: config})
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("num_visual", [1, 2])
|
|
# @pytest.mark.parametrize("vis_encode_type", ["resnet", "nature_cnn", "match3"])
|
|
# def test_visual_advanced_ppo(vis_encode_type, num_visual):
|
|
# env = SimpleEnvironment(
|
|
# [BRAIN_NAME],
|
|
# use_discrete=True,
|
|
# num_visual=num_visual,
|
|
# num_vector=0,
|
|
# step_size=0.5,
|
|
# vis_obs_size=(5, 5, 5) if vis_encode_type == "match3" else (36, 36, 3),
|
|
# )
|
|
# new_networksettings = attr.evolve(
|
|
# SAC_CONFIG.network_settings, vis_encode_type=EncoderType(vis_encode_type)
|
|
# )
|
|
# new_hyperparams = attr.evolve(PPO_CONFIG.hyperparameters, learning_rate=3.0e-4)
|
|
# config = attr.evolve(
|
|
# PPO_CONFIG,
|
|
# hyperparameters=new_hyperparams,
|
|
# network_settings=new_networksettings,
|
|
# max_steps=700,
|
|
# summary_freq=100,
|
|
# )
|
|
# # The number of steps is pretty small for these encoders
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.5)
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# def test_recurrent_ppo(use_discrete):
|
|
# env = MemoryEnvironment([BRAIN_NAME], use_discrete=use_discrete)
|
|
# new_network_settings = attr.evolve(
|
|
# PPO_CONFIG.network_settings,
|
|
# memory=NetworkSettings.MemorySettings(memory_size=16),
|
|
# )
|
|
# new_hyperparams = attr.evolve(
|
|
# PPO_CONFIG.hyperparameters, learning_rate=1.0e-3, batch_size=64, buffer_size=128
|
|
# )
|
|
# config = attr.evolve(
|
|
# PPO_CONFIG,
|
|
# hyperparameters=new_hyperparams,
|
|
# network_settings=new_network_settings,
|
|
# max_steps=5000,
|
|
# )
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9)
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# def test_simple_sac(use_discrete):
|
|
# env = SimpleEnvironment([BRAIN_NAME], use_discrete=use_discrete)
|
|
# config = attr.evolve(SAC_CONFIG)
|
|
# _check_environment_trains(env, {BRAIN_NAME: config})
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# def test_2d_sac(use_discrete):
|
|
# env = SimpleEnvironment(
|
|
# [BRAIN_NAME], use_discrete=use_discrete, action_size=2, step_size=0.8
|
|
# )
|
|
# new_hyperparams = attr.evolve(SAC_CONFIG.hyperparameters, buffer_init_steps=2000)
|
|
# config = attr.evolve(SAC_CONFIG, hyperparameters=new_hyperparams, max_steps=10000)
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.8)
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# @pytest.mark.parametrize("num_visual", [1, 2])
|
|
# def test_visual_sac(num_visual, use_discrete):
|
|
# env = SimpleEnvironment(
|
|
# [BRAIN_NAME],
|
|
# use_discrete=use_discrete,
|
|
# num_visual=num_visual,
|
|
# num_vector=0,
|
|
# step_size=0.2,
|
|
# )
|
|
# new_hyperparams = attr.evolve(
|
|
# SAC_CONFIG.hyperparameters, batch_size=16, learning_rate=3e-4
|
|
# )
|
|
# config = attr.evolve(SAC_CONFIG, hyperparameters=new_hyperparams)
|
|
# _check_environment_trains(env, {BRAIN_NAME: config})
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("num_visual", [1, 2])
|
|
# @pytest.mark.parametrize("vis_encode_type", ["resnet", "nature_cnn", "match3"])
|
|
# def test_visual_advanced_sac(vis_encode_type, num_visual):
|
|
# env = SimpleEnvironment(
|
|
# [BRAIN_NAME],
|
|
# use_discrete=True,
|
|
# num_visual=num_visual,
|
|
# num_vector=0,
|
|
# step_size=0.5,
|
|
# vis_obs_size=(5, 5, 5) if vis_encode_type == "match3" else (36, 36, 3),
|
|
# )
|
|
# new_networksettings = attr.evolve(
|
|
# SAC_CONFIG.network_settings, vis_encode_type=EncoderType(vis_encode_type)
|
|
# )
|
|
# new_hyperparams = attr.evolve(
|
|
# SAC_CONFIG.hyperparameters,
|
|
# batch_size=16,
|
|
# learning_rate=3e-4,
|
|
# buffer_init_steps=0,
|
|
# )
|
|
# config = attr.evolve(
|
|
# SAC_CONFIG,
|
|
# hyperparameters=new_hyperparams,
|
|
# network_settings=new_networksettings,
|
|
# max_steps=100,
|
|
# )
|
|
# # The number of steps is pretty small for these encoders
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.5)
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# def test_recurrent_sac(use_discrete):
|
|
# step_size = 0.2 if use_discrete else 0.5
|
|
# env = MemoryEnvironment(
|
|
# [BRAIN_NAME], use_discrete=use_discrete, step_size=step_size
|
|
# )
|
|
# new_networksettings = attr.evolve(
|
|
# SAC_CONFIG.network_settings,
|
|
# memory=NetworkSettings.MemorySettings(memory_size=16, sequence_length=16),
|
|
# )
|
|
# new_hyperparams = attr.evolve(
|
|
# SAC_CONFIG.hyperparameters,
|
|
# batch_size=128,
|
|
# learning_rate=1e-3,
|
|
# buffer_init_steps=1000,
|
|
# steps_per_update=2,
|
|
# )
|
|
# config = attr.evolve(
|
|
# SAC_CONFIG,
|
|
# hyperparameters=new_hyperparams,
|
|
# network_settings=new_networksettings,
|
|
# max_steps=5000,
|
|
# )
|
|
# _check_environment_trains(env, {BRAIN_NAME: config})
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# def test_simple_ghost(use_discrete):
|
|
# env = SimpleEnvironment(
|
|
# [BRAIN_NAME + "?team=0", BRAIN_NAME + "?team=1"], use_discrete=use_discrete
|
|
# )
|
|
# self_play_settings = SelfPlaySettings(
|
|
# play_against_latest_model_ratio=1.0, save_steps=2000, swap_steps=2000
|
|
# )
|
|
# config = attr.evolve(PPO_CONFIG, self_play=self_play_settings, max_steps=2500)
|
|
# _check_environment_trains(env, {BRAIN_NAME: config})
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# def test_simple_ghost_fails(use_discrete):
|
|
# env = SimpleEnvironment(
|
|
# [BRAIN_NAME + "?team=0", BRAIN_NAME + "?team=1"], use_discrete=use_discrete
|
|
# )
|
|
# # This config should fail because the ghosted policy is never swapped with a competent policy.
|
|
# # Swap occurs after max step is reached.
|
|
# self_play_settings = SelfPlaySettings(
|
|
# play_against_latest_model_ratio=1.0, save_steps=2000, swap_steps=4000
|
|
# )
|
|
# config = attr.evolve(PPO_CONFIG, self_play=self_play_settings, max_steps=2500)
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=None)
|
|
# processed_rewards = [
|
|
# default_reward_processor(rewards) for rewards in env.final_rewards.values()
|
|
# ]
|
|
# success_threshold = 0.9
|
|
# assert any(reward > success_threshold for reward in processed_rewards) and any(
|
|
# reward < success_threshold for reward in processed_rewards
|
|
# )
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# def test_simple_asymm_ghost(use_discrete):
|
|
# # Make opponent for asymmetric case
|
|
# brain_name_opp = BRAIN_NAME + "Opp"
|
|
# env = SimpleEnvironment(
|
|
# [BRAIN_NAME + "?team=0", brain_name_opp + "?team=1"], use_discrete=use_discrete
|
|
# )
|
|
# self_play_settings = SelfPlaySettings(
|
|
# play_against_latest_model_ratio=1.0,
|
|
# save_steps=10000,
|
|
# swap_steps=10000,
|
|
# team_change=400,
|
|
# )
|
|
# config = attr.evolve(PPO_CONFIG, self_play=self_play_settings, max_steps=4000)
|
|
# _check_environment_trains(env, {BRAIN_NAME: config, brain_name_opp: config})
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# def test_simple_asymm_ghost_fails(use_discrete):
|
|
# # Make opponent for asymmetric case
|
|
# brain_name_opp = BRAIN_NAME + "Opp"
|
|
# env = SimpleEnvironment(
|
|
# [BRAIN_NAME + "?team=0", brain_name_opp + "?team=1"], use_discrete=use_discrete
|
|
# )
|
|
# # This config should fail because the team that us not learning when both have reached
|
|
# # max step should be executing the initial, untrained poliy.
|
|
# self_play_settings = SelfPlaySettings(
|
|
# play_against_latest_model_ratio=0.0,
|
|
# save_steps=5000,
|
|
# swap_steps=5000,
|
|
# team_change=2000,
|
|
# )
|
|
# config = attr.evolve(PPO_CONFIG, self_play=self_play_settings, max_steps=3000)
|
|
# _check_environment_trains(
|
|
# env, {BRAIN_NAME: config, brain_name_opp: config}, success_threshold=None
|
|
# )
|
|
# processed_rewards = [
|
|
# default_reward_processor(rewards) for rewards in env.final_rewards.values()
|
|
# ]
|
|
# success_threshold = 0.9
|
|
# assert any(reward > success_threshold for reward in processed_rewards) and any(
|
|
# reward < success_threshold for reward in processed_rewards
|
|
# )
|
|
#
|
|
#
|
|
# @pytest.fixture(scope="session")
|
|
# def simple_record(tmpdir_factory):
|
|
# def record_demo(use_discrete, num_visual=0, num_vector=1):
|
|
# env = RecordEnvironment(
|
|
# [BRAIN_NAME],
|
|
# use_discrete=use_discrete,
|
|
# num_visual=num_visual,
|
|
# num_vector=num_vector,
|
|
# n_demos=100,
|
|
# )
|
|
# # If we want to use true demos, we can solve the env in the usual way
|
|
# # Otherwise, we can just call solve to execute the optimal policy
|
|
# env.solve()
|
|
# agent_info_protos = env.demonstration_protos[BRAIN_NAME]
|
|
# meta_data_proto = DemonstrationMetaProto()
|
|
# brain_param_proto = BrainParametersProto(
|
|
# vector_action_size=[2] if use_discrete else [1],
|
|
# vector_action_descriptions=[""],
|
|
# vector_action_space_type=discrete if use_discrete else continuous,
|
|
# brain_name=BRAIN_NAME,
|
|
# is_training=True,
|
|
# )
|
|
# action_type = "Discrete" if use_discrete else "Continuous"
|
|
# demo_path_name = "1DTest" + action_type + ".demo"
|
|
# demo_path = str(tmpdir_factory.mktemp("tmp_demo").join(demo_path_name))
|
|
# write_demo(demo_path, meta_data_proto, brain_param_proto, agent_info_protos)
|
|
# return demo_path
|
|
#
|
|
# return record_demo
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# @pytest.mark.parametrize("trainer_config", [PPO_CONFIG, SAC_CONFIG])
|
|
# def test_gail(simple_record, use_discrete, trainer_config):
|
|
# demo_path = simple_record(use_discrete)
|
|
# env = SimpleEnvironment([BRAIN_NAME], use_discrete=use_discrete, step_size=0.2)
|
|
# bc_settings = BehavioralCloningSettings(demo_path=demo_path, steps=1000)
|
|
# reward_signals = {
|
|
# RewardSignalType.GAIL: GAILSettings(encoding_size=32, demo_path=demo_path)
|
|
# }
|
|
# config = attr.evolve(
|
|
# trainer_config,
|
|
# reward_signals=reward_signals,
|
|
# behavioral_cloning=bc_settings,
|
|
# max_steps=500,
|
|
# )
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9)
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# def test_gail_visual_ppo(simple_record, use_discrete):
|
|
# demo_path = simple_record(use_discrete, num_visual=1, num_vector=0)
|
|
# env = SimpleEnvironment(
|
|
# [BRAIN_NAME],
|
|
# num_visual=1,
|
|
# num_vector=0,
|
|
# use_discrete=use_discrete,
|
|
# step_size=0.2,
|
|
# )
|
|
# bc_settings = BehavioralCloningSettings(demo_path=demo_path, steps=1500)
|
|
# reward_signals = {
|
|
# RewardSignalType.GAIL: GAILSettings(encoding_size=32, demo_path=demo_path)
|
|
# }
|
|
# hyperparams = attr.evolve(PPO_CONFIG.hyperparameters, learning_rate=3e-4)
|
|
# config = attr.evolve(
|
|
# PPO_CONFIG,
|
|
# reward_signals=reward_signals,
|
|
# hyperparameters=hyperparams,
|
|
# behavioral_cloning=bc_settings,
|
|
# max_steps=1000,
|
|
# )
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9)
|
|
#
|
|
#
|
|
# @pytest.mark.parametrize("use_discrete", [True, False])
|
|
# def test_gail_visual_sac(simple_record, use_discrete):
|
|
# demo_path = simple_record(use_discrete, num_visual=1, num_vector=0)
|
|
# env = SimpleEnvironment(
|
|
# [BRAIN_NAME],
|
|
# num_visual=1,
|
|
# num_vector=0,
|
|
# use_discrete=use_discrete,
|
|
# step_size=0.2,
|
|
# )
|
|
# bc_settings = BehavioralCloningSettings(demo_path=demo_path, steps=1000)
|
|
# reward_signals = {
|
|
# RewardSignalType.GAIL: GAILSettings(encoding_size=32, demo_path=demo_path)
|
|
# }
|
|
# hyperparams = attr.evolve(
|
|
# SAC_CONFIG.hyperparameters, learning_rate=3e-4, batch_size=16
|
|
# )
|
|
# config = attr.evolve(
|
|
# SAC_CONFIG,
|
|
# reward_signals=reward_signals,
|
|
# hyperparameters=hyperparams,
|
|
# behavioral_cloning=bc_settings,
|
|
# max_steps=500,
|
|
# )
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9)
|