Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

105 行
4.0 KiB

import pytest
from unittest import mock
import os
import numpy as np
from mlagents.torch_utils import torch
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.ppo.optimizer_torch import TorchPPOOptimizer
from mlagents.trainers.model_saver.torch_model_saver import TorchModelSaver
from mlagents.trainers.settings import TrainerSettings
from mlagents.trainers.tests import mock_brain as mb
from mlagents.trainers.tests.torch.test_policy import create_policy_mock
def test_register(tmp_path):
trainer_params = TrainerSettings()
model_saver = TorchModelSaver(trainer_params, tmp_path)
opt = mock.Mock(spec=TorchPPOOptimizer)
opt.get_modules = mock.Mock(return_value={})
model_saver.register(opt)
assert model_saver.policy is None
trainer_params = TrainerSettings()
policy = create_policy_mock(trainer_params)
opt.get_modules = mock.Mock(return_value={})
model_saver.register(policy)
assert model_saver.policy is not None
def test_load_save(tmp_path):
path1 = os.path.join(tmp_path, "runid1")
path2 = os.path.join(tmp_path, "runid2")
trainer_params = TrainerSettings()
policy = create_policy_mock(trainer_params)
model_saver = TorchModelSaver(trainer_params, path1)
model_saver.register(policy)
model_saver.initialize_or_load(policy)
policy.set_step(2000)
mock_brain_name = "MockBrain"
model_saver.save_checkpoint(mock_brain_name, 2000)
assert len(os.listdir(tmp_path)) > 0
# Try load from this path
model_saver2 = TorchModelSaver(trainer_params, path1, load=True)
policy2 = create_policy_mock(trainer_params)
model_saver2.register(policy2)
model_saver2.initialize_or_load(policy2)
_compare_two_policies(policy, policy2)
assert policy2.get_current_step() == 2000
# Try initialize from path 1
trainer_params.init_path = path1
model_saver3 = TorchModelSaver(trainer_params, path2)
policy3 = create_policy_mock(trainer_params)
model_saver3.register(policy3)
model_saver3.initialize_or_load(policy3)
_compare_two_policies(policy2, policy3)
# Assert that the steps are 0.
assert policy3.get_current_step() == 0
# TorchPolicy.evalute() returns log_probs instead of all_log_probs like tf does.
# resulting in indeterministic results for testing.
# So here use sample_actions instead.
def _compare_two_policies(policy1: TorchPolicy, policy2: TorchPolicy) -> None:
"""
Make sure two policies have the same output for the same input.
"""
decision_step, _ = mb.create_steps_from_behavior_spec(
policy1.behavior_spec, num_agents=1
)
vec_vis_obs, masks = policy1._split_decision_step(decision_step)
vec_obs = [torch.as_tensor(vec_vis_obs.vector_observations)]
vis_obs = [torch.as_tensor(vis_ob) for vis_ob in vec_vis_obs.visual_observations]
memories = torch.as_tensor(
policy1.retrieve_memories(list(decision_step.agent_id))
).unsqueeze(0)
with torch.no_grad():
_, _, log_probs1, _, _ = policy1.sample_actions(
vec_obs, vis_obs, masks=masks, memories=memories, all_log_probs=True
)
_, _, log_probs2, _, _ = policy2.sample_actions(
vec_obs, vis_obs, masks=masks, memories=memories, all_log_probs=True
)
np.testing.assert_array_equal(log_probs1, log_probs2)
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
def test_checkpoint_conversion(tmpdir, rnn, visual, discrete):
dummy_config = TrainerSettings()
model_path = os.path.join(tmpdir, "Mock_Brain")
policy = create_policy_mock(
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
)
trainer_params = TrainerSettings()
model_saver = TorchModelSaver(trainer_params, model_path)
model_saver.register(policy)
model_saver.save_checkpoint("Mock_Brain", 100)
assert os.path.isfile(model_path + "/Mock_Brain-100.onnx")