Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

299 行
11 KiB

from typing import Tuple, Optional, Union
from mlagents.trainers.exception import UnityTrainerException
from mlagents.trainers.torch.layers import linear_layer, Initialization, Swish
import torch
from torch import nn
class Normalizer(nn.Module):
def __init__(self, vec_obs_size: int):
super().__init__()
self.register_buffer("normalization_steps", torch.tensor(1))
self.register_buffer("running_mean", torch.zeros(vec_obs_size))
self.register_buffer("running_variance", torch.ones(vec_obs_size))
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
normalized_state = torch.clamp(
(inputs - self.running_mean)
/ torch.sqrt(self.running_variance / self.normalization_steps),
-5,
5,
)
return normalized_state
def update(self, vector_input: torch.Tensor) -> None:
steps_increment = vector_input.size()[0]
total_new_steps = self.normalization_steps + steps_increment
input_to_old_mean = vector_input - self.running_mean
new_mean = self.running_mean + (input_to_old_mean / total_new_steps).sum(0)
input_to_new_mean = vector_input - new_mean
new_variance = self.running_variance + (
input_to_new_mean * input_to_old_mean
).sum(0)
# Update in-place
self.running_mean.data.copy_(new_mean.data)
self.running_variance.data.copy_(new_variance.data)
self.normalization_steps.data.copy_(total_new_steps.data)
def copy_from(self, other_normalizer: "Normalizer") -> None:
self.normalization_steps.data.copy_(other_normalizer.normalization_steps.data)
self.running_mean.data.copy_(other_normalizer.running_mean.data)
self.running_variance.copy_(other_normalizer.running_variance.data)
def conv_output_shape(
h_w: Tuple[int, int],
kernel_size: Union[int, Tuple[int, int]] = 1,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
) -> Tuple[int, int]:
"""
Calculates the output shape (height and width) of the output of a convolution layer.
kernel_size, stride, padding and dilation correspond to the inputs of the
torch.nn.Conv2d layer (https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html)
:param h_w: The height and width of the input.
:param kernel_size: The size of the kernel of the convolution (can be an int or a
tuple [width, height])
:param stride: The stride of the convolution
:param padding: The padding of the convolution
:param dilation: The dilation of the convolution
"""
from math import floor
if not isinstance(kernel_size, tuple):
kernel_size = (int(kernel_size), int(kernel_size))
h = floor(
((h_w[0] + (2 * padding) - (dilation * (kernel_size[0] - 1)) - 1) / stride) + 1
)
w = floor(
((h_w[1] + (2 * padding) - (dilation * (kernel_size[1] - 1)) - 1) / stride) + 1
)
return h, w
def pool_out_shape(h_w: Tuple[int, int], kernel_size: int) -> Tuple[int, int]:
"""
Calculates the output shape (height and width) of the output of a max pooling layer.
kernel_size corresponds to the inputs of the
torch.nn.MaxPool2d layer (https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html)
:param kernel_size: The size of the kernel of the convolution
"""
height = (h_w[0] - kernel_size) // 2 + 1
width = (h_w[1] - kernel_size) // 2 + 1
return height, width
class VectorEncoder(nn.Module):
def __init__(
self,
input_size: int,
hidden_size: int,
num_layers: int,
normalize: bool = False,
):
self.normalizer: Optional[Normalizer] = None
super().__init__()
self.layers = [
linear_layer(
input_size,
hidden_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.0,
)
]
self.layers.append(Swish())
if normalize:
self.normalizer = Normalizer(input_size)
for _ in range(num_layers - 1):
self.layers.append(
linear_layer(
hidden_size,
hidden_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.0,
)
)
self.layers.append(Swish())
self.seq_layers = nn.Sequential(*self.layers)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
if self.normalizer is not None:
inputs = self.normalizer(inputs)
return self.seq_layers(inputs)
def copy_normalization(self, other_encoder: "VectorEncoder") -> None:
if self.normalizer is not None and other_encoder.normalizer is not None:
self.normalizer.copy_from(other_encoder.normalizer)
def update_normalization(self, inputs: torch.Tensor) -> None:
if self.normalizer is not None:
self.normalizer.update(inputs)
class VectorAndUnnormalizedInputEncoder(VectorEncoder):
"""
Encoder for concatenated vector input (can be normalized) and unnormalized vector input.
This is used for passing inputs to the network that should not be normalized, such as
actions in the case of a Q function or task parameterizations. It will result in an encoder with
this structure:
____________ ____________ ____________
| Vector | | Normalize | | Fully |
| | --> | | --> | Connected | ___________
|____________| |____________| | | | Output |
____________ | | --> | |
|Unnormalized| | | |___________|
| Input | ---------------------> | |
|____________| |____________|
"""
def __init__(
self,
input_size: int,
hidden_size: int,
unnormalized_input_size: int,
num_layers: int,
normalize: bool = False,
):
super().__init__(
input_size + unnormalized_input_size,
hidden_size,
num_layers,
normalize=False,
)
if normalize:
self.normalizer = Normalizer(input_size)
else:
self.normalizer = None
def forward( # pylint: disable=W0221
self, inputs: torch.Tensor, unnormalized_inputs: Optional[torch.Tensor] = None
) -> None:
if unnormalized_inputs is None:
raise UnityTrainerException(
"Attempted to call an VectorAndUnnormalizedInputEncoder without an unnormalized input."
) # Fix mypy errors about method parameters.
if self.normalizer is not None:
inputs = self.normalizer(inputs)
return self.seq_layers(torch.cat([inputs, unnormalized_inputs], dim=-1))
class SimpleVisualEncoder(nn.Module):
def __init__(
self, height: int, width: int, initial_channels: int, output_size: int
):
super().__init__()
self.h_size = output_size
conv_1_hw = conv_output_shape((height, width), 8, 4)
conv_2_hw = conv_output_shape(conv_1_hw, 4, 2)
self.final_flat = conv_2_hw[0] * conv_2_hw[1] * 32
self.conv_layers = nn.Sequential(
nn.Conv2d(initial_channels, 16, [8, 8], [4, 4]),
nn.LeakyReLU(),
nn.Conv2d(16, 32, [4, 4], [2, 2]),
nn.LeakyReLU(),
)
self.dense = nn.Sequential(
linear_layer(
self.final_flat,
self.h_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.0,
),
nn.LeakyReLU(),
)
def forward(self, visual_obs: torch.Tensor) -> None:
hidden = self.conv_layers(visual_obs)
hidden = torch.reshape(hidden, (-1, self.final_flat))
hidden = self.dense(hidden)
return hidden
class NatureVisualEncoder(nn.Module):
def __init__(self, height, width, initial_channels, output_size):
super().__init__()
self.h_size = output_size
conv_1_hw = conv_output_shape((height, width), 8, 4)
conv_2_hw = conv_output_shape(conv_1_hw, 4, 2)
conv_3_hw = conv_output_shape(conv_2_hw, 3, 1)
self.final_flat = conv_3_hw[0] * conv_3_hw[1] * 64
self.conv_layers = nn.Sequential(
nn.Conv2d(initial_channels, 32, [8, 8], [4, 4]),
nn.LeakyReLU(),
nn.Conv2d(32, 64, [4, 4], [2, 2]),
nn.LeakyReLU(),
nn.Conv2d(64, 64, [3, 3], [1, 1]),
nn.LeakyReLU(),
)
self.dense = nn.Sequential(
linear_layer(
self.final_flat,
self.h_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.0,
),
nn.LeakyReLU(),
)
def forward(self, visual_obs: torch.Tensor) -> None:
hidden = self.conv_layers(visual_obs)
hidden = hidden.view([-1, self.final_flat])
hidden = self.dense(hidden)
return hidden
class ResNetBlock(nn.Module):
def __init__(self, channel: int):
"""
Creates a ResNet Block.
:param channel: The number of channels in the input (and output) tensors of the
convolutions
"""
super().__init__()
self.layers = nn.Sequential(
Swish(),
nn.Conv2d(channel, channel, [3, 3], [1, 1], padding=1),
Swish(),
nn.Conv2d(channel, channel, [3, 3], [1, 1], padding=1),
)
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
return input_tensor + self.layers(input_tensor)
class ResNetVisualEncoder(nn.Module):
def __init__(self, height, width, initial_channels, final_hidden):
super().__init__()
n_channels = [16, 32, 32] # channel for each stack
n_blocks = 2 # number of residual blocks
layers = []
last_channel = initial_channels
for _, channel in enumerate(n_channels):
layers.append(nn.Conv2d(last_channel, channel, [3, 3], [1, 1], padding=1))
layers.append(nn.MaxPool2d([3, 3], [2, 2]))
height, width = pool_out_shape((height, width), 3)
for _ in range(n_blocks):
layers.append(ResNetBlock(channel))
last_channel = channel
layers.append(Swish())
self.dense = linear_layer(
n_channels[-1] * height * width,
final_hidden,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.0,
)
self.sequential = nn.Sequential(*layers)
def forward(self, visual_obs):
batch_size = visual_obs.shape[0]
hidden = self.sequential(visual_obs)
before_out = hidden.view(batch_size, -1)
return torch.relu(self.dense(before_out))