Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

152 行
6.0 KiB

import pathlib
import logging
import os
from typing import List, Tuple
import numpy as np
from mlagents.trainers.buffer import AgentBuffer
from mlagents.trainers.brain import BrainParameters, BrainInfo
from mlagents.envs.communicator_objects.agent_info_action_pair_pb2 import (
AgentInfoActionPairProto,
)
from mlagents.envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
from mlagents.envs.communicator_objects.demonstration_meta_pb2 import (
DemonstrationMetaProto,
)
from mlagents.envs.timers import timed, hierarchical_timer
from google.protobuf.internal.decoder import _DecodeVarint32 # type: ignore
logger = logging.getLogger("mlagents.trainers")
@timed
def make_demo_buffer(
pair_infos: List[AgentInfoActionPairProto],
brain_params: BrainParameters,
sequence_length: int,
) -> AgentBuffer:
# Create and populate buffer using experiences
demo_raw_buffer = AgentBuffer()
demo_processed_buffer = AgentBuffer()
for idx, experience in enumerate(pair_infos):
if idx > len(pair_infos) - 2:
break
current_pair_info = pair_infos[idx]
next_pair_info = pair_infos[idx + 1]
current_brain_info = BrainInfo.from_agent_proto(
0, [current_pair_info.agent_info], brain_params
)
next_brain_info = BrainInfo.from_agent_proto(
0, [next_pair_info.agent_info], brain_params
)
previous_action = (
np.array(pair_infos[idx].action_info.vector_actions, dtype=np.float32) * 0
)
if idx > 0:
previous_action = np.array(
pair_infos[idx - 1].action_info.vector_actions, dtype=np.float32
)
demo_raw_buffer["done"].append(next_brain_info.local_done[0])
demo_raw_buffer["rewards"].append(next_brain_info.rewards[0])
for i in range(brain_params.number_visual_observations):
demo_raw_buffer["visual_obs%d" % i].append(
current_brain_info.visual_observations[i][0]
)
if brain_params.vector_observation_space_size > 0:
demo_raw_buffer["vector_obs"].append(
current_brain_info.vector_observations[0]
)
demo_raw_buffer["actions"].append(current_pair_info.action_info.vector_actions)
demo_raw_buffer["prev_action"].append(previous_action)
if next_brain_info.local_done[0]:
demo_raw_buffer.resequence_and_append(
demo_processed_buffer, batch_size=None, training_length=sequence_length
)
demo_raw_buffer.reset_agent()
demo_raw_buffer.resequence_and_append(
demo_processed_buffer, batch_size=None, training_length=sequence_length
)
return demo_processed_buffer
@timed
def demo_to_buffer(
file_path: str, sequence_length: int
) -> Tuple[BrainParameters, AgentBuffer]:
"""
Loads demonstration file and uses it to fill training buffer.
:param file_path: Location of demonstration file (.demo).
:param sequence_length: Length of trajectories to fill buffer.
:return:
"""
brain_params, info_action_pair, _ = load_demonstration(file_path)
demo_buffer = make_demo_buffer(info_action_pair, brain_params, sequence_length)
return brain_params, demo_buffer
@timed
def load_demonstration(
file_path: str
) -> Tuple[BrainParameters, List[AgentInfoActionPairProto], int]:
"""
Loads and parses a demonstration file.
:param file_path: Location of demonstration file (.demo).
:return: BrainParameter and list of AgentInfoActionPairProto containing demonstration data.
"""
# First 32 bytes of file dedicated to meta-data.
INITIAL_POS = 33
file_paths = []
if os.path.isdir(file_path):
all_files = os.listdir(file_path)
for _file in all_files:
if _file.endswith(".demo"):
file_paths.append(os.path.join(file_path, _file))
if not all_files:
raise ValueError("There are no '.demo' files in the provided directory.")
elif os.path.isfile(file_path):
file_paths.append(file_path)
file_extension = pathlib.Path(file_path).suffix
if file_extension != ".demo":
raise ValueError(
"The file is not a '.demo' file. Please provide a file with the "
"correct extension."
)
else:
raise FileNotFoundError(
"The demonstration file or directory {} does not exist.".format(file_path)
)
brain_params = None
brain_param_proto = None
info_action_pairs = []
total_expected = 0
for _file_path in file_paths:
with open(_file_path, "rb") as fp:
with hierarchical_timer("read_file"):
data = fp.read()
next_pos, pos, obs_decoded = 0, 0, 0
while pos < len(data):
next_pos, pos = _DecodeVarint32(data, pos)
if obs_decoded == 0:
meta_data_proto = DemonstrationMetaProto()
meta_data_proto.ParseFromString(data[pos : pos + next_pos])
total_expected += meta_data_proto.number_steps
pos = INITIAL_POS
if obs_decoded == 1:
brain_param_proto = BrainParametersProto()
brain_param_proto.ParseFromString(data[pos : pos + next_pos])
pos += next_pos
if obs_decoded > 1:
agent_info_action = AgentInfoActionPairProto()
agent_info_action.ParseFromString(data[pos : pos + next_pos])
if brain_params is None:
brain_params = BrainParameters.from_proto(
brain_param_proto, agent_info_action.agent_info
)
info_action_pairs.append(agent_info_action)
if len(info_action_pairs) == total_expected:
break
pos += next_pos
obs_decoded += 1
return brain_params, info_action_pairs, total_expected