Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

436 行
16 KiB

import logging
# import numpy as np
from typing import Any, Dict # , Optional
import tensorflow as tf
import tensorflow_probability as tfp
from mlagents.envs.timers import timed
from mlagents.envs.brain import BrainInfo, BrainParameters
from mlagents.trainers.models import EncoderType # , LearningRateSchedule
# from mlagents.trainers.ppo.models import PPOModel
# from mlagents.trainers.tf_policy import TFPolicy
from mlagents.trainers.components.reward_signals.reward_signal_factory import (
create_reward_signal,
)
# from mlagents.trainers.components.bc.module import BCModule
logger = logging.getLogger("mlagents.trainers")
class VectorEncoder(tf.keras.layers.Layer):
def __init__(self, hidden_size, num_layers, **kwargs):
super(VectorEncoder, self).__init__(**kwargs)
self.layers = []
for i in range(num_layers):
self.layers.append(tf.keras.layers.Dense(hidden_size))
def call(self, inputs):
x = inputs
for layer in self.layers:
x = layer(x)
return x
class Critic(tf.keras.layers.Layer):
def __init__(self, stream_names, encoder, **kwargs):
super(Critic, self).__init__(**kwargs)
self.stream_names = stream_names
self.encoder = encoder
self.value_heads = {}
for name in stream_names:
value = tf.keras.layers.Dense(1, name="{}_value".format(name))
self.value_heads[name] = value
def call(self, inputs):
hidden = self.encoder(inputs)
value_outputs = {}
for stream_name, value in self.value_heads.items():
value_outputs[stream_name] = self.value_heads[stream_name](hidden)
return value_outputs
class GaussianDistribution(tf.keras.layers.Layer):
def __init__(self, num_outputs, **kwargs):
super(GaussianDistribution, self).__init__(**kwargs)
self.mu = tf.keras.layers.Dense(num_outputs)
self.log_sigma_sq = tf.keras.layers.Dense(num_outputs)
def call(self, inputs, epsilon):
mu = self.mu(inputs)
log_sig = self.log_sigma_sq(inputs)
return tfp.distrbutions.Normal(loc=mu, scale=tf.sqrt(tf.exp(log_sig)))
# action = mu + tf.sqrt(tf.exp(log_sig)) + epsilon
# def log_probs(self, inputs) # Compute probability of model output.
# probs = (
# -0.5 * tf.square(tf.stop_gradient(self.output_pre) - mu) / sigma_sq
# - 0.5 * tf.log(2.0 * np.pi)
# - 0.5 * self.log_sigma_sq
# )
class ActorCriticPolicy(tf.keras.Model):
def __init__(
self,
h_size,
act_size,
normalize,
num_layers,
m_size,
stream_names,
vis_encode_type,
):
super(ActorCriticPolicy, self).__init__()
self.encoder = VectorEncoder(h_size, num_layers)
self.distribution = GaussianDistribution(act_size)
self.critic = Critic(stream_names, VectorEncoder(h_size, num_layers))
self.act_size = act_size
def act(self, input):
_hidden = self.encoder(input)
# epsilon = np.random.normal(size=(input.shape[0], self.act_size))
dist = self.distribution(_hidden)
action = dist.sample()
log_prob = dist.log_prob(action)
entropy = dist.entropy()
return action, log_prob, entropy
def get_values(self, input):
return self.critic(input)
class PPOPolicy(object):
def __init__(
self,
seed: int,
brain: BrainParameters,
trainer_params: Dict[str, Any],
is_training: bool,
load: bool,
):
"""
Policy for Proximal Policy Optimization Networks.
:param seed: Random seed.
:param brain: Assigned Brain object.
:param trainer_params: Defined training parameters.
:param is_training: Whether the model should be trained.
:param load: Whether a pre-trained model will be loaded or a new one created.
"""
# super().__init__(seed, brain, trainer_params)
reward_signal_configs = trainer_params["reward_signals"]
self.inference_dict: Dict[str, tf.Tensor] = {}
self.update_dict: Dict[str, tf.Tensor] = {}
self.stats_name_to_update_name = {
"Losses/Value Loss": "value_loss",
"Losses/Policy Loss": "policy_loss",
}
self.create_model(
brain, trainer_params, reward_signal_configs, is_training, load, seed
)
self.trainer_params = trainer_params
self.optimizer = tf.keras.optimizers.Adam(
lr=self.trainer_params["learning_rate"]
)
self.create_reward_signals(reward_signal_configs)
# with self.graph.as_default():
# self.bc_module: Optional[BCModule] = None
# # Create pretrainer if needed
# if "pretraining" in trainer_params:
# BCModule.check_config(trainer_params["pretraining"])
# self.bc_module = BCModule(
# self,
# policy_learning_rate=trainer_params["learning_rate"],
# default_batch_size=trainer_params["batch_size"],
# default_num_epoch=trainer_params["num_epoch"],
# **trainer_params["pretraining"],
# )
# if load:
# self._load_graph()
# else:
# self._initialize_graph()
def create_model(
self, brain, trainer_params, reward_signal_configs, is_training, load, seed
):
"""
Create PPO model
:param brain: Assigned Brain object.
:param trainer_params: Defined training parameters.
:param reward_signal_configs: Reward signal config
:param seed: Random seed.
"""
self.model = ActorCriticPolicy(
brain=brain,
h_size=int(trainer_params["hidden_units"]),
normalize=trainer_params["normalize"],
num_layers=int(trainer_params["num_layers"]),
m_size=self.m_size,
stream_names=list(reward_signal_configs.keys()),
vis_encode_type=EncoderType(
trainer_params.get("vis_encode_type", "simple")
),
)
# self.model.create_ppo_optimizer()
# self.inference_dict.update(
# {
# "action": self.model.output,
# "log_probs": self.model.all_log_probs,
# "value_heads": self.model.value_heads,
# "value": self.model.value,
# "entropy": self.model.entropy,
# "learning_rate": self.model.learning_rate,
# }
# )
# if self.use_continuous_act:
# self.inference_dict["pre_action"] = self.model.output_pre
# if self.use_recurrent:
# self.inference_dict["memory_out"] = self.model.memory_out
# self.total_policy_loss = self.model.abs_policy_loss
# self.update_dict.update(
# {
# "value_loss": self.model.value_loss,
# "policy_loss": self.total_policy_loss,
# "update_batch": self.model.update_batch,
# }
# )
def ppo_loss(
self,
advantages,
probs,
old_probs,
values,
old_values,
returns,
masks,
entropy,
beta,
epsilon,
lr,
max_step,
):
"""
Creates training-specific Tensorflow ops for PPO models.
:param probs: Current policy probabilities
:param old_probs: Past policy probabilities
:param value_heads: Value estimate tensors from each value stream
:param beta: Entropy regularization strength
:param entropy: Current policy entropy
:param epsilon: Value for policy-divergence threshold
:param lr: Learning rate
:param max_step: Total number of training steps.
"""
self.returns_holders = {}
# self.old_values = {}
# for name in value_heads.keys():
# returns_holder = tf.placeholder(
# shape=[None], dtype=tf.float32, name="{}_returns".format(name)
# )
# old_value = tf.placeholder(
# shape=[None], dtype=tf.float32, name="{}_value_estimate".format(name)
# )
# self.returns_holders[name] = returns_holder
# self.old_values[name] = old_value
advantage = tf.expand_dims(advantages, -1)
# decay_epsilon = tf.train.polynomial_decay(
# epsilon, self.global_step, max_step, 0.1, power=1.0
# )
# decay_beta = tf.train.polynomial_decay(
# beta, self.global_step, max_step, 1e-5, power=1.0
# )
decay_epsilon = self.trainer_params["epsilon"]
decay_beta = self.trainer_params["beta"]
value_losses = []
for name, head in values.items():
clipped_value_estimate = old_values[name] + tf.clip_by_value(
tf.reduce_sum(head, axis=1) - old_values[name],
-decay_epsilon,
decay_epsilon,
)
v_opt_a = tf.squared_difference(returns[name], tf.reduce_sum(head, axis=1))
v_opt_b = tf.squared_difference(returns[name], clipped_value_estimate)
value_loss = tf.reduce_mean(
tf.dynamic_partition(tf.maximum(v_opt_a, v_opt_b), masks, 2)[1]
)
value_losses.append(value_loss)
value_loss = tf.reduce_mean(value_losses)
r_theta = tf.exp(probs - old_probs)
p_opt_a = r_theta * advantage
p_opt_b = (
tf.clip_by_value(r_theta, 1.0 - decay_epsilon, 1.0 + decay_epsilon)
* advantage
)
policy_loss = -tf.reduce_mean(
tf.dynamic_partition(tf.minimum(p_opt_a, p_opt_b), masks, 2)[1]
)
# For cleaner stats reporting
# abs_policy_loss = tf.abs(policy_loss)
loss = (
policy_loss
+ 0.5 * value_loss
- decay_beta * tf.reduce_mean(tf.dynamic_partition(entropy, masks, 2)[1])
)
return loss
def create_reward_signals(self, reward_signal_configs):
"""
Create reward signals
:param reward_signal_configs: Reward signal config.
"""
self.reward_signals = {}
with self.graph.as_default():
# Create reward signals
for reward_signal, config in reward_signal_configs.items():
self.reward_signals[reward_signal] = create_reward_signal(
self, self.model, reward_signal, config
)
self.update_dict.update(self.reward_signals[reward_signal].update_dict)
@timed
def evaluate(self, brain_info):
"""
Evaluates policy for the agent experiences provided.
:param brain_info: BrainInfo object containing inputs.
:return: Outputs from network as defined by self.inference_dict.
"""
run_out = {}
run_out["action"], run_out["log_probs"], run_out["entropy"] = self.model.act(
brain_info.vector_observations
)
run_out["value_heads"] = self.model.get_values(brain_info.vector_observations)
run_out["value"] = tf.reduce_mean(list(self.value_heads.values()), 0)
run_out["learning_rate"] = 0.0
return run_out
@timed
def update(self, mini_batch, num_sequences):
"""
Performs update on model.
:param mini_batch: Batch of experiences.
:param num_sequences: Number of sequences to process.
:return: Results of update.
"""
with tf.GradientTape() as tape:
returns = {}
old_values = {}
for name in self.reward_signals:
returns[name] = mini_batch["{}_returns".format(name)]
old_values[name] = mini_batch["{}_value_estimates".format(name)]
values = self.model.get_values(mini_batch["vector_obs"])
action, probs, entropy = self.model.act(mini_batch["vector_obs"])
loss = self.ppo_loss(
mini_batch["advantages"],
probs,
mini_batch["action_probs"],
values,
old_values,
returns,
mini_batch["masks"],
entropy,
1e-3,
1000,
)
grads = tape.gradient(loss, self.model.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.model.trainable_weights))
update_stats = {}
update_stats["loss"] = loss
# for stat_name, update_name in stats_needed.items():
# update_stats[stat_name] = update_vals[update_name]
return update_stats
def construct_feed_dict(self, model, mini_batch, num_sequences):
feed_dict = {
model.batch_size: num_sequences,
model.sequence_length: self.sequence_length,
model.mask_input: mini_batch["masks"],
model.advantage: mini_batch["advantages"],
model.all_old_log_probs: mini_batch["action_probs"],
}
for name in self.reward_signals:
feed_dict[model.returns_holders[name]] = mini_batch[
"{}_returns".format(name)
]
feed_dict[model.old_values[name]] = mini_batch[
"{}_value_estimates".format(name)
]
if self.use_continuous_act:
feed_dict[model.output_pre] = mini_batch["actions_pre"]
feed_dict[model.epsilon] = mini_batch["random_normal_epsilon"]
else:
feed_dict[model.action_holder] = mini_batch["actions"]
if self.use_recurrent:
feed_dict[model.prev_action] = mini_batch["prev_action"]
feed_dict[model.action_masks] = mini_batch["action_mask"]
if self.use_vec_obs:
feed_dict[model.vector_in] = mini_batch["vector_obs"]
if self.model.vis_obs_size > 0:
for i, _ in enumerate(self.model.visual_in):
feed_dict[model.visual_in[i]] = mini_batch["visual_obs%d" % i]
if self.use_recurrent:
mem_in = [
mini_batch["memory"][i]
for i in range(0, len(mini_batch["memory"]), self.sequence_length)
]
feed_dict[model.memory_in] = mem_in
return feed_dict
def get_value_estimates(
self, brain_info: BrainInfo, idx: int, done: bool
) -> Dict[str, float]:
"""
Generates value estimates for bootstrapping.
:param brain_info: BrainInfo to be used for bootstrapping.
:param idx: Index in BrainInfo of agent.
:param done: Whether or not this is the last element of the episode, in which case the value estimate will be 0.
:return: The value estimate dictionary with key being the name of the reward signal and the value the
corresponding value estimate.
"""
# feed_dict: Dict[tf.Tensor, Any] = {
# self.model.batch_size: 1,
# self.model.sequence_length: 1,
# }
# for i in range(len(brain_info.visual_observations)):
# feed_dict[self.model.visual_in[i]] = [
# brain_info.visual_observations[i][idx]
# ]
# if self.use_vec_obs:
# feed_dict[self.model.vector_in] = [brain_info.vector_observations[idx]]
# if self.use_recurrent:
# if brain_info.memories.shape[1] == 0:
# brain_info.memories = self.make_empty_memory(len(brain_info.agents))
# feed_dict[self.model.memory_in] = [brain_info.memories[idx]]
# if not self.use_continuous_act and self.use_recurrent:
# feed_dict[self.model.prev_action] = [
# brain_info.previous_vector_actions[idx]
# ]
value_estimates = self.model.get_values(brain_info.vector_observations[idx])
value_estimates = {k: float(v) for k, v in value_estimates.items()}
# If we're done, reassign all of the value estimates that need terminal states.
if done:
for k in value_estimates:
if self.reward_signals[k].use_terminal_states:
value_estimates[k] = 0.0
return value_estimates