您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
625 行
23 KiB
625 行
23 KiB
import logging
|
|
from typing import Any, Callable, Dict
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
import tensorflow.contrib.layers as c_layers
|
|
|
|
logger = logging.getLogger("mlagents.trainers")
|
|
|
|
ActivationFunction = Callable[[tf.Tensor], tf.Tensor]
|
|
|
|
|
|
class LearningModel(object):
|
|
_version_number_ = 2
|
|
|
|
def __init__(
|
|
self, m_size, normalize, use_recurrent, brain, seed, stream_names=None
|
|
):
|
|
tf.set_random_seed(seed)
|
|
self.brain = brain
|
|
self.vector_in = None
|
|
self.global_step, self.increment_step, self.steps_to_increment = (
|
|
self.create_global_steps()
|
|
)
|
|
self.visual_in = []
|
|
self.batch_size = tf.placeholder(shape=None, dtype=tf.int32, name="batch_size")
|
|
self.sequence_length = tf.placeholder(
|
|
shape=None, dtype=tf.int32, name="sequence_length"
|
|
)
|
|
self.mask_input = tf.placeholder(shape=[None], dtype=tf.float32, name="masks")
|
|
self.mask = tf.cast(self.mask_input, tf.int32)
|
|
self.stream_names = stream_names or []
|
|
self.use_recurrent = use_recurrent
|
|
if self.use_recurrent:
|
|
self.m_size = m_size
|
|
else:
|
|
self.m_size = 0
|
|
self.normalize = normalize
|
|
self.act_size = brain.vector_action_space_size
|
|
self.vec_obs_size = (
|
|
brain.vector_observation_space_size * brain.num_stacked_vector_observations
|
|
)
|
|
self.vis_obs_size = brain.number_visual_observations
|
|
tf.Variable(
|
|
int(brain.vector_action_space_type == "continuous"),
|
|
name="is_continuous_control",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
tf.Variable(
|
|
self._version_number_,
|
|
name="version_number",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
tf.Variable(self.m_size, name="memory_size", trainable=False, dtype=tf.int32)
|
|
if brain.vector_action_space_type == "continuous":
|
|
tf.Variable(
|
|
self.act_size[0],
|
|
name="action_output_shape",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
else:
|
|
tf.Variable(
|
|
sum(self.act_size),
|
|
name="action_output_shape",
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
)
|
|
|
|
@staticmethod
|
|
def create_global_steps():
|
|
"""Creates TF ops to track and increment global training step."""
|
|
global_step = tf.Variable(
|
|
0, name="global_step", trainable=False, dtype=tf.int32
|
|
)
|
|
steps_to_increment = tf.placeholder(
|
|
shape=[], dtype=tf.int32, name="steps_to_increment"
|
|
)
|
|
increment_step = tf.assign(global_step, tf.add(global_step, steps_to_increment))
|
|
return global_step, increment_step, steps_to_increment
|
|
|
|
@staticmethod
|
|
def scaled_init(scale):
|
|
return c_layers.variance_scaling_initializer(scale)
|
|
|
|
@staticmethod
|
|
def swish(input_activation: tf.Tensor) -> tf.Tensor:
|
|
"""Swish activation function. For more info: https://arxiv.org/abs/1710.05941"""
|
|
return tf.multiply(input_activation, tf.nn.sigmoid(input_activation))
|
|
|
|
@staticmethod
|
|
def create_visual_input(camera_parameters: Dict[str, Any], name: str) -> tf.Tensor:
|
|
"""
|
|
Creates image input op.
|
|
:param camera_parameters: Parameters for visual observation from BrainInfo.
|
|
:param name: Desired name of input op.
|
|
:return: input op.
|
|
"""
|
|
o_size_h = camera_parameters["height"]
|
|
o_size_w = camera_parameters["width"]
|
|
bw = camera_parameters["blackAndWhite"]
|
|
|
|
if bw:
|
|
c_channels = 1
|
|
else:
|
|
c_channels = 3
|
|
|
|
visual_in = tf.placeholder(
|
|
shape=[None, o_size_h, o_size_w, c_channels], dtype=tf.float32, name=name
|
|
)
|
|
return visual_in
|
|
|
|
def create_vector_input(self, name="vector_observation"):
|
|
"""
|
|
Creates ops for vector observation input.
|
|
:param name: Name of the placeholder op.
|
|
:param vec_obs_size: Size of stacked vector observation.
|
|
:return:
|
|
"""
|
|
self.vector_in = tf.placeholder(
|
|
shape=[None, self.vec_obs_size], dtype=tf.float32, name=name
|
|
)
|
|
if self.normalize:
|
|
self.create_normalizer(self.vector_in)
|
|
return self.normalize_vector_obs(self.vector_in)
|
|
else:
|
|
return self.vector_in
|
|
|
|
def normalize_vector_obs(self, vector_obs):
|
|
normalized_state = tf.clip_by_value(
|
|
(vector_obs - self.running_mean)
|
|
/ tf.sqrt(
|
|
self.running_variance
|
|
/ (tf.cast(self.normalization_steps, tf.float32) + 1)
|
|
),
|
|
-5,
|
|
5,
|
|
name="normalized_state",
|
|
)
|
|
return normalized_state
|
|
|
|
def create_normalizer(self, vector_obs):
|
|
self.normalization_steps = tf.get_variable(
|
|
"normalization_steps",
|
|
[],
|
|
trainable=False,
|
|
dtype=tf.int32,
|
|
initializer=tf.ones_initializer(),
|
|
)
|
|
self.running_mean = tf.get_variable(
|
|
"running_mean",
|
|
[self.vec_obs_size],
|
|
trainable=False,
|
|
dtype=tf.float32,
|
|
initializer=tf.zeros_initializer(),
|
|
)
|
|
self.running_variance = tf.get_variable(
|
|
"running_variance",
|
|
[self.vec_obs_size],
|
|
trainable=False,
|
|
dtype=tf.float32,
|
|
initializer=tf.ones_initializer(),
|
|
)
|
|
self.update_normalization = self.create_normalizer_update(vector_obs)
|
|
|
|
def create_normalizer_update(self, vector_input):
|
|
mean_current_observation = tf.reduce_mean(vector_input, axis=0)
|
|
new_mean = self.running_mean + (
|
|
mean_current_observation - self.running_mean
|
|
) / tf.cast(tf.add(self.normalization_steps, 1), tf.float32)
|
|
new_variance = self.running_variance + (mean_current_observation - new_mean) * (
|
|
mean_current_observation - self.running_mean
|
|
)
|
|
update_mean = tf.assign(self.running_mean, new_mean)
|
|
update_variance = tf.assign(self.running_variance, new_variance)
|
|
update_norm_step = tf.assign(
|
|
self.normalization_steps, self.normalization_steps + 1
|
|
)
|
|
return tf.group([update_mean, update_variance, update_norm_step])
|
|
|
|
@staticmethod
|
|
def create_vector_observation_encoder(
|
|
observation_input: tf.Tensor,
|
|
h_size: int,
|
|
activation: ActivationFunction,
|
|
num_layers: int,
|
|
scope: str,
|
|
reuse: bool,
|
|
) -> tf.Tensor:
|
|
"""
|
|
Builds a set of hidden state encoders.
|
|
:param reuse: Whether to re-use the weights within the same scope.
|
|
:param scope: Graph scope for the encoder ops.
|
|
:param observation_input: Input vector.
|
|
:param h_size: Hidden layer size.
|
|
:param activation: What type of activation function to use for layers.
|
|
:param num_layers: number of hidden layers to create.
|
|
:return: List of hidden layer tensors.
|
|
"""
|
|
with tf.variable_scope(scope):
|
|
hidden = observation_input
|
|
for i in range(num_layers):
|
|
hidden = tf.layers.dense(
|
|
hidden,
|
|
h_size,
|
|
activation=activation,
|
|
reuse=reuse,
|
|
name="hidden_{}".format(i),
|
|
kernel_initializer=c_layers.variance_scaling_initializer(1.0),
|
|
)
|
|
return hidden
|
|
|
|
def create_visual_observation_encoder(
|
|
self,
|
|
image_input: tf.Tensor,
|
|
h_size: int,
|
|
activation: ActivationFunction,
|
|
num_layers: int,
|
|
scope: str,
|
|
reuse: bool,
|
|
) -> tf.Tensor:
|
|
"""
|
|
Builds a set of visual (CNN) encoders.
|
|
:param reuse: Whether to re-use the weights within the same scope.
|
|
:param scope: The scope of the graph within which to create the ops.
|
|
:param image_input: The placeholder for the image input to use.
|
|
:param h_size: Hidden layer size.
|
|
:param activation: What type of activation function to use for layers.
|
|
:param num_layers: number of hidden layers to create.
|
|
:return: List of hidden layer tensors.
|
|
"""
|
|
with tf.variable_scope(scope):
|
|
conv1 = tf.layers.conv2d(
|
|
image_input,
|
|
16,
|
|
kernel_size=[8, 8],
|
|
strides=[4, 4],
|
|
activation=tf.nn.elu,
|
|
reuse=reuse,
|
|
name="conv_1",
|
|
)
|
|
conv2 = tf.layers.conv2d(
|
|
conv1,
|
|
32,
|
|
kernel_size=[4, 4],
|
|
strides=[2, 2],
|
|
activation=tf.nn.elu,
|
|
reuse=reuse,
|
|
name="conv_2",
|
|
)
|
|
hidden = c_layers.flatten(conv2)
|
|
|
|
with tf.variable_scope(scope + "/" + "flat_encoding"):
|
|
hidden_flat = self.create_vector_observation_encoder(
|
|
hidden, h_size, activation, num_layers, scope, reuse
|
|
)
|
|
return hidden_flat
|
|
|
|
@staticmethod
|
|
def create_discrete_action_masking_layer(all_logits, action_masks, action_size):
|
|
"""
|
|
Creates a masking layer for the discrete actions
|
|
:param all_logits: The concatenated unnormalized action probabilities for all branches
|
|
:param action_masks: The mask for the logits. Must be of dimension [None x total_number_of_action]
|
|
:param action_size: A list containing the number of possible actions for each branch
|
|
:return: The action output dimension [batch_size, num_branches] and the concatenated normalized logits
|
|
"""
|
|
action_idx = [0] + list(np.cumsum(action_size))
|
|
branches_logits = [
|
|
all_logits[:, action_idx[i] : action_idx[i + 1]]
|
|
for i in range(len(action_size))
|
|
]
|
|
branch_masks = [
|
|
action_masks[:, action_idx[i] : action_idx[i + 1]]
|
|
for i in range(len(action_size))
|
|
]
|
|
raw_probs = [
|
|
tf.multiply(tf.nn.softmax(branches_logits[k]) + 1.0e-10, branch_masks[k])
|
|
for k in range(len(action_size))
|
|
]
|
|
normalized_probs = [
|
|
tf.divide(raw_probs[k], tf.reduce_sum(raw_probs[k], axis=1, keepdims=True))
|
|
for k in range(len(action_size))
|
|
]
|
|
output = tf.concat(
|
|
[
|
|
tf.multinomial(tf.log(normalized_probs[k]), 1)
|
|
for k in range(len(action_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
return (
|
|
output,
|
|
tf.concat(
|
|
[
|
|
tf.log(normalized_probs[k] + 1.0e-10)
|
|
for k in range(len(action_size))
|
|
],
|
|
axis=1,
|
|
),
|
|
)
|
|
|
|
def create_observation_streams(self, num_streams, h_size, num_layers):
|
|
"""
|
|
Creates encoding stream for observations.
|
|
:param num_streams: Number of streams to create.
|
|
:param h_size: Size of hidden linear layers in stream.
|
|
:param num_layers: Number of hidden linear layers in stream.
|
|
:return: List of encoded streams.
|
|
"""
|
|
brain = self.brain
|
|
activation_fn = self.swish
|
|
|
|
self.visual_in = []
|
|
for i in range(brain.number_visual_observations):
|
|
visual_input = self.create_visual_input(
|
|
brain.camera_resolutions[i], name="visual_observation_" + str(i)
|
|
)
|
|
self.visual_in.append(visual_input)
|
|
vector_observation_input = self.create_vector_input()
|
|
|
|
final_hiddens = []
|
|
for i in range(num_streams):
|
|
visual_encoders = []
|
|
hidden_state, hidden_visual = None, None
|
|
if self.vis_obs_size > 0:
|
|
for j in range(brain.number_visual_observations):
|
|
encoded_visual = self.create_visual_observation_encoder(
|
|
self.visual_in[j],
|
|
h_size,
|
|
activation_fn,
|
|
num_layers,
|
|
"main_graph_{}_encoder{}".format(i, j),
|
|
False,
|
|
)
|
|
visual_encoders.append(encoded_visual)
|
|
hidden_visual = tf.concat(visual_encoders, axis=1)
|
|
if brain.vector_observation_space_size > 0:
|
|
hidden_state = self.create_vector_observation_encoder(
|
|
vector_observation_input,
|
|
h_size,
|
|
activation_fn,
|
|
num_layers,
|
|
"main_graph_{}".format(i),
|
|
False,
|
|
)
|
|
if hidden_state is not None and hidden_visual is not None:
|
|
final_hidden = tf.concat([hidden_visual, hidden_state], axis=1)
|
|
elif hidden_state is None and hidden_visual is not None:
|
|
final_hidden = hidden_visual
|
|
elif hidden_state is not None and hidden_visual is None:
|
|
final_hidden = hidden_state
|
|
else:
|
|
raise Exception(
|
|
"No valid network configuration possible. "
|
|
"There are no states or observations in this brain"
|
|
)
|
|
final_hiddens.append(final_hidden)
|
|
return final_hiddens
|
|
|
|
@staticmethod
|
|
def create_recurrent_encoder(input_state, memory_in, sequence_length, name="lstm"):
|
|
"""
|
|
Builds a recurrent encoder for either state or observations (LSTM).
|
|
:param sequence_length: Length of sequence to unroll.
|
|
:param input_state: The input tensor to the LSTM cell.
|
|
:param memory_in: The input memory to the LSTM cell.
|
|
:param name: The scope of the LSTM cell.
|
|
"""
|
|
s_size = input_state.get_shape().as_list()[1]
|
|
m_size = memory_in.get_shape().as_list()[1]
|
|
lstm_input_state = tf.reshape(input_state, shape=[-1, sequence_length, s_size])
|
|
memory_in = tf.reshape(memory_in[:, :], [-1, m_size])
|
|
half_point = int(m_size / 2)
|
|
with tf.variable_scope(name):
|
|
rnn_cell = tf.contrib.rnn.BasicLSTMCell(half_point)
|
|
lstm_vector_in = tf.contrib.rnn.LSTMStateTuple(
|
|
memory_in[:, :half_point], memory_in[:, half_point:]
|
|
)
|
|
recurrent_output, lstm_state_out = tf.nn.dynamic_rnn(
|
|
rnn_cell, lstm_input_state, initial_state=lstm_vector_in
|
|
)
|
|
|
|
recurrent_output = tf.reshape(recurrent_output, shape=[-1, half_point])
|
|
return recurrent_output, tf.concat([lstm_state_out.c, lstm_state_out.h], axis=1)
|
|
|
|
def create_value_heads(self, stream_names, hidden_input):
|
|
"""
|
|
Creates one value estimator head for each reward signal in stream_names.
|
|
Also creates the node corresponding to the mean of all the value heads in self.value.
|
|
self.value_head is a dictionary of stream name to node containing the value estimator head for that signal.
|
|
:param stream_names: The list of reward signal names
|
|
:param hidden_input: The last layer of the Critic. The heads will consist of one dense hidden layer on top
|
|
of the hidden input.
|
|
"""
|
|
self.value_heads = {}
|
|
for name in stream_names:
|
|
value = tf.layers.dense(hidden_input, 1, name="{}_value".format(name))
|
|
self.value_heads[name] = value
|
|
self.value = tf.reduce_mean(list(self.value_heads.values()), 0)
|
|
|
|
def create_cc_actor_critic(self, h_size, num_layers):
|
|
"""
|
|
Creates Continuous control actor-critic model.
|
|
:param h_size: Size of hidden linear layers.
|
|
:param num_layers: Number of hidden linear layers.
|
|
"""
|
|
hidden_streams = self.create_observation_streams(2, h_size, num_layers)
|
|
|
|
if self.use_recurrent:
|
|
self.memory_in = tf.placeholder(
|
|
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
|
|
)
|
|
_half_point = int(self.m_size / 2)
|
|
hidden_policy, memory_policy_out = self.create_recurrent_encoder(
|
|
hidden_streams[0],
|
|
self.memory_in[:, :_half_point],
|
|
self.sequence_length,
|
|
name="lstm_policy",
|
|
)
|
|
|
|
hidden_value, memory_value_out = self.create_recurrent_encoder(
|
|
hidden_streams[1],
|
|
self.memory_in[:, _half_point:],
|
|
self.sequence_length,
|
|
name="lstm_value",
|
|
)
|
|
self.memory_out = tf.concat(
|
|
[memory_policy_out, memory_value_out], axis=1, name="recurrent_out"
|
|
)
|
|
else:
|
|
hidden_policy = hidden_streams[0]
|
|
hidden_value = hidden_streams[1]
|
|
|
|
mu = tf.layers.dense(
|
|
hidden_policy,
|
|
self.act_size[0],
|
|
activation=None,
|
|
kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01),
|
|
)
|
|
|
|
self.log_sigma_sq = tf.get_variable(
|
|
"log_sigma_squared",
|
|
[self.act_size[0]],
|
|
dtype=tf.float32,
|
|
initializer=tf.zeros_initializer(),
|
|
)
|
|
|
|
sigma_sq = tf.exp(self.log_sigma_sq)
|
|
|
|
self.epsilon = tf.placeholder(
|
|
shape=[None, self.act_size[0]], dtype=tf.float32, name="epsilon"
|
|
)
|
|
# Clip and scale output to ensure actions are always within [-1, 1] range.
|
|
self.output_pre = mu + tf.sqrt(sigma_sq) * self.epsilon
|
|
output_post = tf.clip_by_value(self.output_pre, -3, 3) / 3
|
|
self.output = tf.identity(output_post, name="action")
|
|
self.selected_actions = tf.stop_gradient(output_post)
|
|
|
|
# Compute probability of model output.
|
|
all_probs = (
|
|
-0.5 * tf.square(tf.stop_gradient(self.output_pre) - mu) / sigma_sq
|
|
- 0.5 * tf.log(2.0 * np.pi)
|
|
- 0.5 * self.log_sigma_sq
|
|
)
|
|
|
|
self.all_log_probs = tf.identity(all_probs, name="action_probs")
|
|
|
|
self.entropy = 0.5 * tf.reduce_mean(
|
|
tf.log(2 * np.pi * np.e) + self.log_sigma_sq
|
|
)
|
|
|
|
self.create_value_heads(self.stream_names, hidden_value)
|
|
|
|
self.all_old_log_probs = tf.placeholder(
|
|
shape=[None, self.act_size[0]], dtype=tf.float32, name="old_probabilities"
|
|
)
|
|
|
|
# We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control.
|
|
self.log_probs = tf.reduce_sum(
|
|
(tf.identity(self.all_log_probs)), axis=1, keepdims=True
|
|
)
|
|
self.old_log_probs = tf.reduce_sum(
|
|
(tf.identity(self.all_old_log_probs)), axis=1, keepdims=True
|
|
)
|
|
|
|
def create_dc_actor_critic(self, h_size, num_layers):
|
|
"""
|
|
Creates Discrete control actor-critic model.
|
|
:param h_size: Size of hidden linear layers.
|
|
:param num_layers: Number of hidden linear layers.
|
|
"""
|
|
hidden_streams = self.create_observation_streams(1, h_size, num_layers)
|
|
hidden = hidden_streams[0]
|
|
|
|
if self.use_recurrent:
|
|
self.prev_action = tf.placeholder(
|
|
shape=[None, len(self.act_size)], dtype=tf.int32, name="prev_action"
|
|
)
|
|
prev_action_oh = tf.concat(
|
|
[
|
|
tf.one_hot(self.prev_action[:, i], self.act_size[i])
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
hidden = tf.concat([hidden, prev_action_oh], axis=1)
|
|
|
|
self.memory_in = tf.placeholder(
|
|
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
|
|
)
|
|
hidden, memory_out = self.create_recurrent_encoder(
|
|
hidden, self.memory_in, self.sequence_length
|
|
)
|
|
self.memory_out = tf.identity(memory_out, name="recurrent_out")
|
|
|
|
policy_branches = []
|
|
for size in self.act_size:
|
|
policy_branches.append(
|
|
tf.layers.dense(
|
|
hidden,
|
|
size,
|
|
activation=None,
|
|
use_bias=False,
|
|
kernel_initializer=c_layers.variance_scaling_initializer(
|
|
factor=0.01
|
|
),
|
|
)
|
|
)
|
|
|
|
self.all_log_probs = tf.concat(
|
|
[branch for branch in policy_branches], axis=1, name="action_probs"
|
|
)
|
|
|
|
self.action_masks = tf.placeholder(
|
|
shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks"
|
|
)
|
|
output, normalized_logits = self.create_discrete_action_masking_layer(
|
|
self.all_log_probs, self.action_masks, self.act_size
|
|
)
|
|
|
|
self.output = tf.identity(output)
|
|
self.normalized_logits = tf.identity(normalized_logits, name="action")
|
|
|
|
self.create_value_heads(self.stream_names, hidden)
|
|
|
|
self.action_holder = tf.placeholder(
|
|
shape=[None, len(policy_branches)], dtype=tf.int32, name="action_holder"
|
|
)
|
|
self.action_oh = tf.concat(
|
|
[
|
|
tf.one_hot(self.action_holder[:, i], self.act_size[i])
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
self.selected_actions = tf.stop_gradient(self.action_oh)
|
|
|
|
self.all_old_log_probs = tf.placeholder(
|
|
shape=[None, sum(self.act_size)], dtype=tf.float32, name="old_probabilities"
|
|
)
|
|
_, old_normalized_logits = self.create_discrete_action_masking_layer(
|
|
self.all_old_log_probs, self.action_masks, self.act_size
|
|
)
|
|
|
|
action_idx = [0] + list(np.cumsum(self.act_size))
|
|
|
|
self.entropy = tf.reduce_sum(
|
|
(
|
|
tf.stack(
|
|
[
|
|
tf.nn.softmax_cross_entropy_with_logits_v2(
|
|
labels=tf.nn.softmax(
|
|
self.all_log_probs[:, action_idx[i] : action_idx[i + 1]]
|
|
),
|
|
logits=self.all_log_probs[
|
|
:, action_idx[i] : action_idx[i + 1]
|
|
],
|
|
)
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
),
|
|
axis=1,
|
|
)
|
|
|
|
self.log_probs = tf.reduce_sum(
|
|
(
|
|
tf.stack(
|
|
[
|
|
-tf.nn.softmax_cross_entropy_with_logits_v2(
|
|
labels=self.action_oh[:, action_idx[i] : action_idx[i + 1]],
|
|
logits=normalized_logits[
|
|
:, action_idx[i] : action_idx[i + 1]
|
|
],
|
|
)
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
),
|
|
axis=1,
|
|
keepdims=True,
|
|
)
|
|
self.old_log_probs = tf.reduce_sum(
|
|
(
|
|
tf.stack(
|
|
[
|
|
-tf.nn.softmax_cross_entropy_with_logits_v2(
|
|
labels=self.action_oh[:, action_idx[i] : action_idx[i + 1]],
|
|
logits=old_normalized_logits[
|
|
:, action_idx[i] : action_idx[i + 1]
|
|
],
|
|
)
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
),
|
|
axis=1,
|
|
keepdims=True,
|
|
)
|