Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

625 行
23 KiB

import logging
from typing import Any, Callable, Dict
import numpy as np
import tensorflow as tf
import tensorflow.contrib.layers as c_layers
logger = logging.getLogger("mlagents.trainers")
ActivationFunction = Callable[[tf.Tensor], tf.Tensor]
class LearningModel(object):
_version_number_ = 2
def __init__(
self, m_size, normalize, use_recurrent, brain, seed, stream_names=None
):
tf.set_random_seed(seed)
self.brain = brain
self.vector_in = None
self.global_step, self.increment_step, self.steps_to_increment = (
self.create_global_steps()
)
self.visual_in = []
self.batch_size = tf.placeholder(shape=None, dtype=tf.int32, name="batch_size")
self.sequence_length = tf.placeholder(
shape=None, dtype=tf.int32, name="sequence_length"
)
self.mask_input = tf.placeholder(shape=[None], dtype=tf.float32, name="masks")
self.mask = tf.cast(self.mask_input, tf.int32)
self.stream_names = stream_names or []
self.use_recurrent = use_recurrent
if self.use_recurrent:
self.m_size = m_size
else:
self.m_size = 0
self.normalize = normalize
self.act_size = brain.vector_action_space_size
self.vec_obs_size = (
brain.vector_observation_space_size * brain.num_stacked_vector_observations
)
self.vis_obs_size = brain.number_visual_observations
tf.Variable(
int(brain.vector_action_space_type == "continuous"),
name="is_continuous_control",
trainable=False,
dtype=tf.int32,
)
tf.Variable(
self._version_number_,
name="version_number",
trainable=False,
dtype=tf.int32,
)
tf.Variable(self.m_size, name="memory_size", trainable=False, dtype=tf.int32)
if brain.vector_action_space_type == "continuous":
tf.Variable(
self.act_size[0],
name="action_output_shape",
trainable=False,
dtype=tf.int32,
)
else:
tf.Variable(
sum(self.act_size),
name="action_output_shape",
trainable=False,
dtype=tf.int32,
)
@staticmethod
def create_global_steps():
"""Creates TF ops to track and increment global training step."""
global_step = tf.Variable(
0, name="global_step", trainable=False, dtype=tf.int32
)
steps_to_increment = tf.placeholder(
shape=[], dtype=tf.int32, name="steps_to_increment"
)
increment_step = tf.assign(global_step, tf.add(global_step, steps_to_increment))
return global_step, increment_step, steps_to_increment
@staticmethod
def scaled_init(scale):
return c_layers.variance_scaling_initializer(scale)
@staticmethod
def swish(input_activation: tf.Tensor) -> tf.Tensor:
"""Swish activation function. For more info: https://arxiv.org/abs/1710.05941"""
return tf.multiply(input_activation, tf.nn.sigmoid(input_activation))
@staticmethod
def create_visual_input(camera_parameters: Dict[str, Any], name: str) -> tf.Tensor:
"""
Creates image input op.
:param camera_parameters: Parameters for visual observation from BrainInfo.
:param name: Desired name of input op.
:return: input op.
"""
o_size_h = camera_parameters["height"]
o_size_w = camera_parameters["width"]
bw = camera_parameters["blackAndWhite"]
if bw:
c_channels = 1
else:
c_channels = 3
visual_in = tf.placeholder(
shape=[None, o_size_h, o_size_w, c_channels], dtype=tf.float32, name=name
)
return visual_in
def create_vector_input(self, name="vector_observation"):
"""
Creates ops for vector observation input.
:param name: Name of the placeholder op.
:param vec_obs_size: Size of stacked vector observation.
:return:
"""
self.vector_in = tf.placeholder(
shape=[None, self.vec_obs_size], dtype=tf.float32, name=name
)
if self.normalize:
self.create_normalizer(self.vector_in)
return self.normalize_vector_obs(self.vector_in)
else:
return self.vector_in
def normalize_vector_obs(self, vector_obs):
normalized_state = tf.clip_by_value(
(vector_obs - self.running_mean)
/ tf.sqrt(
self.running_variance
/ (tf.cast(self.normalization_steps, tf.float32) + 1)
),
-5,
5,
name="normalized_state",
)
return normalized_state
def create_normalizer(self, vector_obs):
self.normalization_steps = tf.get_variable(
"normalization_steps",
[],
trainable=False,
dtype=tf.int32,
initializer=tf.ones_initializer(),
)
self.running_mean = tf.get_variable(
"running_mean",
[self.vec_obs_size],
trainable=False,
dtype=tf.float32,
initializer=tf.zeros_initializer(),
)
self.running_variance = tf.get_variable(
"running_variance",
[self.vec_obs_size],
trainable=False,
dtype=tf.float32,
initializer=tf.ones_initializer(),
)
self.update_normalization = self.create_normalizer_update(vector_obs)
def create_normalizer_update(self, vector_input):
mean_current_observation = tf.reduce_mean(vector_input, axis=0)
new_mean = self.running_mean + (
mean_current_observation - self.running_mean
) / tf.cast(tf.add(self.normalization_steps, 1), tf.float32)
new_variance = self.running_variance + (mean_current_observation - new_mean) * (
mean_current_observation - self.running_mean
)
update_mean = tf.assign(self.running_mean, new_mean)
update_variance = tf.assign(self.running_variance, new_variance)
update_norm_step = tf.assign(
self.normalization_steps, self.normalization_steps + 1
)
return tf.group([update_mean, update_variance, update_norm_step])
@staticmethod
def create_vector_observation_encoder(
observation_input: tf.Tensor,
h_size: int,
activation: ActivationFunction,
num_layers: int,
scope: str,
reuse: bool,
) -> tf.Tensor:
"""
Builds a set of hidden state encoders.
:param reuse: Whether to re-use the weights within the same scope.
:param scope: Graph scope for the encoder ops.
:param observation_input: Input vector.
:param h_size: Hidden layer size.
:param activation: What type of activation function to use for layers.
:param num_layers: number of hidden layers to create.
:return: List of hidden layer tensors.
"""
with tf.variable_scope(scope):
hidden = observation_input
for i in range(num_layers):
hidden = tf.layers.dense(
hidden,
h_size,
activation=activation,
reuse=reuse,
name="hidden_{}".format(i),
kernel_initializer=c_layers.variance_scaling_initializer(1.0),
)
return hidden
def create_visual_observation_encoder(
self,
image_input: tf.Tensor,
h_size: int,
activation: ActivationFunction,
num_layers: int,
scope: str,
reuse: bool,
) -> tf.Tensor:
"""
Builds a set of visual (CNN) encoders.
:param reuse: Whether to re-use the weights within the same scope.
:param scope: The scope of the graph within which to create the ops.
:param image_input: The placeholder for the image input to use.
:param h_size: Hidden layer size.
:param activation: What type of activation function to use for layers.
:param num_layers: number of hidden layers to create.
:return: List of hidden layer tensors.
"""
with tf.variable_scope(scope):
conv1 = tf.layers.conv2d(
image_input,
16,
kernel_size=[8, 8],
strides=[4, 4],
activation=tf.nn.elu,
reuse=reuse,
name="conv_1",
)
conv2 = tf.layers.conv2d(
conv1,
32,
kernel_size=[4, 4],
strides=[2, 2],
activation=tf.nn.elu,
reuse=reuse,
name="conv_2",
)
hidden = c_layers.flatten(conv2)
with tf.variable_scope(scope + "/" + "flat_encoding"):
hidden_flat = self.create_vector_observation_encoder(
hidden, h_size, activation, num_layers, scope, reuse
)
return hidden_flat
@staticmethod
def create_discrete_action_masking_layer(all_logits, action_masks, action_size):
"""
Creates a masking layer for the discrete actions
:param all_logits: The concatenated unnormalized action probabilities for all branches
:param action_masks: The mask for the logits. Must be of dimension [None x total_number_of_action]
:param action_size: A list containing the number of possible actions for each branch
:return: The action output dimension [batch_size, num_branches] and the concatenated normalized logits
"""
action_idx = [0] + list(np.cumsum(action_size))
branches_logits = [
all_logits[:, action_idx[i] : action_idx[i + 1]]
for i in range(len(action_size))
]
branch_masks = [
action_masks[:, action_idx[i] : action_idx[i + 1]]
for i in range(len(action_size))
]
raw_probs = [
tf.multiply(tf.nn.softmax(branches_logits[k]) + 1.0e-10, branch_masks[k])
for k in range(len(action_size))
]
normalized_probs = [
tf.divide(raw_probs[k], tf.reduce_sum(raw_probs[k], axis=1, keepdims=True))
for k in range(len(action_size))
]
output = tf.concat(
[
tf.multinomial(tf.log(normalized_probs[k]), 1)
for k in range(len(action_size))
],
axis=1,
)
return (
output,
tf.concat(
[
tf.log(normalized_probs[k] + 1.0e-10)
for k in range(len(action_size))
],
axis=1,
),
)
def create_observation_streams(self, num_streams, h_size, num_layers):
"""
Creates encoding stream for observations.
:param num_streams: Number of streams to create.
:param h_size: Size of hidden linear layers in stream.
:param num_layers: Number of hidden linear layers in stream.
:return: List of encoded streams.
"""
brain = self.brain
activation_fn = self.swish
self.visual_in = []
for i in range(brain.number_visual_observations):
visual_input = self.create_visual_input(
brain.camera_resolutions[i], name="visual_observation_" + str(i)
)
self.visual_in.append(visual_input)
vector_observation_input = self.create_vector_input()
final_hiddens = []
for i in range(num_streams):
visual_encoders = []
hidden_state, hidden_visual = None, None
if self.vis_obs_size > 0:
for j in range(brain.number_visual_observations):
encoded_visual = self.create_visual_observation_encoder(
self.visual_in[j],
h_size,
activation_fn,
num_layers,
"main_graph_{}_encoder{}".format(i, j),
False,
)
visual_encoders.append(encoded_visual)
hidden_visual = tf.concat(visual_encoders, axis=1)
if brain.vector_observation_space_size > 0:
hidden_state = self.create_vector_observation_encoder(
vector_observation_input,
h_size,
activation_fn,
num_layers,
"main_graph_{}".format(i),
False,
)
if hidden_state is not None and hidden_visual is not None:
final_hidden = tf.concat([hidden_visual, hidden_state], axis=1)
elif hidden_state is None and hidden_visual is not None:
final_hidden = hidden_visual
elif hidden_state is not None and hidden_visual is None:
final_hidden = hidden_state
else:
raise Exception(
"No valid network configuration possible. "
"There are no states or observations in this brain"
)
final_hiddens.append(final_hidden)
return final_hiddens
@staticmethod
def create_recurrent_encoder(input_state, memory_in, sequence_length, name="lstm"):
"""
Builds a recurrent encoder for either state or observations (LSTM).
:param sequence_length: Length of sequence to unroll.
:param input_state: The input tensor to the LSTM cell.
:param memory_in: The input memory to the LSTM cell.
:param name: The scope of the LSTM cell.
"""
s_size = input_state.get_shape().as_list()[1]
m_size = memory_in.get_shape().as_list()[1]
lstm_input_state = tf.reshape(input_state, shape=[-1, sequence_length, s_size])
memory_in = tf.reshape(memory_in[:, :], [-1, m_size])
half_point = int(m_size / 2)
with tf.variable_scope(name):
rnn_cell = tf.contrib.rnn.BasicLSTMCell(half_point)
lstm_vector_in = tf.contrib.rnn.LSTMStateTuple(
memory_in[:, :half_point], memory_in[:, half_point:]
)
recurrent_output, lstm_state_out = tf.nn.dynamic_rnn(
rnn_cell, lstm_input_state, initial_state=lstm_vector_in
)
recurrent_output = tf.reshape(recurrent_output, shape=[-1, half_point])
return recurrent_output, tf.concat([lstm_state_out.c, lstm_state_out.h], axis=1)
def create_value_heads(self, stream_names, hidden_input):
"""
Creates one value estimator head for each reward signal in stream_names.
Also creates the node corresponding to the mean of all the value heads in self.value.
self.value_head is a dictionary of stream name to node containing the value estimator head for that signal.
:param stream_names: The list of reward signal names
:param hidden_input: The last layer of the Critic. The heads will consist of one dense hidden layer on top
of the hidden input.
"""
self.value_heads = {}
for name in stream_names:
value = tf.layers.dense(hidden_input, 1, name="{}_value".format(name))
self.value_heads[name] = value
self.value = tf.reduce_mean(list(self.value_heads.values()), 0)
def create_cc_actor_critic(self, h_size, num_layers):
"""
Creates Continuous control actor-critic model.
:param h_size: Size of hidden linear layers.
:param num_layers: Number of hidden linear layers.
"""
hidden_streams = self.create_observation_streams(2, h_size, num_layers)
if self.use_recurrent:
self.memory_in = tf.placeholder(
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
)
_half_point = int(self.m_size / 2)
hidden_policy, memory_policy_out = self.create_recurrent_encoder(
hidden_streams[0],
self.memory_in[:, :_half_point],
self.sequence_length,
name="lstm_policy",
)
hidden_value, memory_value_out = self.create_recurrent_encoder(
hidden_streams[1],
self.memory_in[:, _half_point:],
self.sequence_length,
name="lstm_value",
)
self.memory_out = tf.concat(
[memory_policy_out, memory_value_out], axis=1, name="recurrent_out"
)
else:
hidden_policy = hidden_streams[0]
hidden_value = hidden_streams[1]
mu = tf.layers.dense(
hidden_policy,
self.act_size[0],
activation=None,
kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01),
)
self.log_sigma_sq = tf.get_variable(
"log_sigma_squared",
[self.act_size[0]],
dtype=tf.float32,
initializer=tf.zeros_initializer(),
)
sigma_sq = tf.exp(self.log_sigma_sq)
self.epsilon = tf.placeholder(
shape=[None, self.act_size[0]], dtype=tf.float32, name="epsilon"
)
# Clip and scale output to ensure actions are always within [-1, 1] range.
self.output_pre = mu + tf.sqrt(sigma_sq) * self.epsilon
output_post = tf.clip_by_value(self.output_pre, -3, 3) / 3
self.output = tf.identity(output_post, name="action")
self.selected_actions = tf.stop_gradient(output_post)
# Compute probability of model output.
all_probs = (
-0.5 * tf.square(tf.stop_gradient(self.output_pre) - mu) / sigma_sq
- 0.5 * tf.log(2.0 * np.pi)
- 0.5 * self.log_sigma_sq
)
self.all_log_probs = tf.identity(all_probs, name="action_probs")
self.entropy = 0.5 * tf.reduce_mean(
tf.log(2 * np.pi * np.e) + self.log_sigma_sq
)
self.create_value_heads(self.stream_names, hidden_value)
self.all_old_log_probs = tf.placeholder(
shape=[None, self.act_size[0]], dtype=tf.float32, name="old_probabilities"
)
# We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control.
self.log_probs = tf.reduce_sum(
(tf.identity(self.all_log_probs)), axis=1, keepdims=True
)
self.old_log_probs = tf.reduce_sum(
(tf.identity(self.all_old_log_probs)), axis=1, keepdims=True
)
def create_dc_actor_critic(self, h_size, num_layers):
"""
Creates Discrete control actor-critic model.
:param h_size: Size of hidden linear layers.
:param num_layers: Number of hidden linear layers.
"""
hidden_streams = self.create_observation_streams(1, h_size, num_layers)
hidden = hidden_streams[0]
if self.use_recurrent:
self.prev_action = tf.placeholder(
shape=[None, len(self.act_size)], dtype=tf.int32, name="prev_action"
)
prev_action_oh = tf.concat(
[
tf.one_hot(self.prev_action[:, i], self.act_size[i])
for i in range(len(self.act_size))
],
axis=1,
)
hidden = tf.concat([hidden, prev_action_oh], axis=1)
self.memory_in = tf.placeholder(
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
)
hidden, memory_out = self.create_recurrent_encoder(
hidden, self.memory_in, self.sequence_length
)
self.memory_out = tf.identity(memory_out, name="recurrent_out")
policy_branches = []
for size in self.act_size:
policy_branches.append(
tf.layers.dense(
hidden,
size,
activation=None,
use_bias=False,
kernel_initializer=c_layers.variance_scaling_initializer(
factor=0.01
),
)
)
self.all_log_probs = tf.concat(
[branch for branch in policy_branches], axis=1, name="action_probs"
)
self.action_masks = tf.placeholder(
shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks"
)
output, normalized_logits = self.create_discrete_action_masking_layer(
self.all_log_probs, self.action_masks, self.act_size
)
self.output = tf.identity(output)
self.normalized_logits = tf.identity(normalized_logits, name="action")
self.create_value_heads(self.stream_names, hidden)
self.action_holder = tf.placeholder(
shape=[None, len(policy_branches)], dtype=tf.int32, name="action_holder"
)
self.action_oh = tf.concat(
[
tf.one_hot(self.action_holder[:, i], self.act_size[i])
for i in range(len(self.act_size))
],
axis=1,
)
self.selected_actions = tf.stop_gradient(self.action_oh)
self.all_old_log_probs = tf.placeholder(
shape=[None, sum(self.act_size)], dtype=tf.float32, name="old_probabilities"
)
_, old_normalized_logits = self.create_discrete_action_masking_layer(
self.all_old_log_probs, self.action_masks, self.act_size
)
action_idx = [0] + list(np.cumsum(self.act_size))
self.entropy = tf.reduce_sum(
(
tf.stack(
[
tf.nn.softmax_cross_entropy_with_logits_v2(
labels=tf.nn.softmax(
self.all_log_probs[:, action_idx[i] : action_idx[i + 1]]
),
logits=self.all_log_probs[
:, action_idx[i] : action_idx[i + 1]
],
)
for i in range(len(self.act_size))
],
axis=1,
)
),
axis=1,
)
self.log_probs = tf.reduce_sum(
(
tf.stack(
[
-tf.nn.softmax_cross_entropy_with_logits_v2(
labels=self.action_oh[:, action_idx[i] : action_idx[i + 1]],
logits=normalized_logits[
:, action_idx[i] : action_idx[i + 1]
],
)
for i in range(len(self.act_size))
],
axis=1,
)
),
axis=1,
keepdims=True,
)
self.old_log_probs = tf.reduce_sum(
(
tf.stack(
[
-tf.nn.softmax_cross_entropy_with_logits_v2(
labels=self.action_oh[:, action_idx[i] : action_idx[i + 1]],
logits=old_normalized_logits[
:, action_idx[i] : action_idx[i + 1]
],
)
for i in range(len(self.act_size))
],
axis=1,
)
),
axis=1,
keepdims=True,
)