您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
303 行
11 KiB
303 行
11 KiB
using System.Collections.Generic;
|
|
using Unity.MLAgents.Sensors;
|
|
using UnityEngine;
|
|
|
|
namespace Unity.MLAgents.Extensions.Match3
|
|
{
|
|
/// <summary>
|
|
/// Type of observations to generate.
|
|
///
|
|
/// </summary>
|
|
public enum Match3ObservationType
|
|
{
|
|
/// <summary>
|
|
/// Generate a one-hot encoding of the cell type for each cell on the board. If there are special types,
|
|
/// these will also be one-hot encoded.
|
|
/// </summary>
|
|
Vector,
|
|
|
|
/// <summary>
|
|
/// Generate a one-hot encoding of the cell type for each cell on the board, but arranged as
|
|
/// a Rows x Columns visual observation. If there are special types, these will also be one-hot encoded.
|
|
/// </summary>
|
|
UncompressedVisual,
|
|
|
|
/// <summary>
|
|
/// Generate a one-hot encoding of the cell type for each cell on the board, but arranged as
|
|
/// a Rows x Columns visual observation. If there are special types, these will also be one-hot encoded.
|
|
/// During training, these will be sent as a concatenated series of PNG images, with 3 channels per image.
|
|
/// </summary>
|
|
CompressedVisual
|
|
}
|
|
|
|
/// <summary>
|
|
/// Sensor for Match3 games. Can generate either vector, compressed visual,
|
|
/// or uncompressed visual observations. Uses AbstractBoard.GetCellType()
|
|
/// and AbstractBoard.GetSpecialType() to determine the observation values.
|
|
/// </summary>
|
|
public class Match3Sensor : ISparseChannelSensor, IBuiltInSensor
|
|
{
|
|
private Match3ObservationType m_ObservationType;
|
|
private AbstractBoard m_Board;
|
|
private ObservationSpec m_ObservationSpec;
|
|
private int[] m_SparseChannelMapping;
|
|
private string m_Name;
|
|
|
|
private int m_Rows;
|
|
private int m_Columns;
|
|
private int m_NumCellTypes;
|
|
private int m_NumSpecialTypes;
|
|
private ISparseChannelSensor sparseChannelSensorImplementation;
|
|
|
|
private int SpecialTypeSize
|
|
{
|
|
get { return m_NumSpecialTypes == 0 ? 0 : m_NumSpecialTypes + 1; }
|
|
}
|
|
|
|
/// <summary>
|
|
/// Create a sensor for the board with the specified observation type.
|
|
/// </summary>
|
|
/// <param name="board"></param>
|
|
/// <param name="obsType"></param>
|
|
/// <param name="name"></param>
|
|
public Match3Sensor(AbstractBoard board, Match3ObservationType obsType, string name)
|
|
{
|
|
m_Board = board;
|
|
m_Name = name;
|
|
m_Rows = board.Rows;
|
|
m_Columns = board.Columns;
|
|
m_NumCellTypes = board.NumCellTypes;
|
|
m_NumSpecialTypes = board.NumSpecialTypes;
|
|
|
|
m_ObservationType = obsType;
|
|
m_ObservationSpec = obsType == Match3ObservationType.Vector
|
|
? ObservationSpec.Vector(m_Rows * m_Columns * (m_NumCellTypes + SpecialTypeSize))
|
|
: ObservationSpec.Visual(m_Rows, m_Columns, m_NumCellTypes + SpecialTypeSize);
|
|
|
|
// See comment in GetCompressedObservation()
|
|
var cellTypePaddedSize = 3 * ((m_NumCellTypes + 2) / 3);
|
|
m_SparseChannelMapping = new int[cellTypePaddedSize + SpecialTypeSize];
|
|
// If we have 4 cell types and 2 special types (3 special size), we'd have
|
|
// [0, 1, 2, 3, -1, -1, 4, 5, 6]
|
|
for (var i = 0; i < m_NumCellTypes; i++)
|
|
{
|
|
m_SparseChannelMapping[i] = i;
|
|
}
|
|
|
|
for (var i = m_NumCellTypes; i < cellTypePaddedSize; i++)
|
|
{
|
|
m_SparseChannelMapping[i] = -1;
|
|
}
|
|
|
|
for (var i = 0; i < SpecialTypeSize; i++)
|
|
{
|
|
m_SparseChannelMapping[cellTypePaddedSize + i] = i + m_NumCellTypes;
|
|
}
|
|
}
|
|
|
|
/// <inheritdoc/>
|
|
public ObservationSpec GetObservationSpec()
|
|
{
|
|
return m_ObservationSpec;
|
|
}
|
|
|
|
/// <inheritdoc/>
|
|
public int Write(ObservationWriter writer)
|
|
{
|
|
if (m_Board.Rows != m_Rows || m_Board.Columns != m_Columns || m_Board.NumCellTypes != m_NumCellTypes)
|
|
{
|
|
Debug.LogWarning(
|
|
$"Board shape changes since sensor initialization. This may cause unexpected results. " +
|
|
$"Old shape: Rows={m_Rows} Columns={m_Columns}, NumCellTypes={m_NumCellTypes} " +
|
|
$"Current shape: Rows={m_Board.Rows} Columns={m_Board.Columns}, NumCellTypes={m_Board.NumCellTypes}"
|
|
);
|
|
}
|
|
|
|
if (m_ObservationType == Match3ObservationType.Vector)
|
|
{
|
|
int offset = 0;
|
|
for (var r = 0; r < m_Rows; r++)
|
|
{
|
|
for (var c = 0; c < m_Columns; c++)
|
|
{
|
|
var val = m_Board.GetCellType(r, c);
|
|
for (var i = 0; i < m_NumCellTypes; i++)
|
|
{
|
|
writer[offset] = (i == val) ? 1.0f : 0.0f;
|
|
offset++;
|
|
}
|
|
|
|
if (m_NumSpecialTypes > 0)
|
|
{
|
|
var special = m_Board.GetSpecialType(r, c);
|
|
for (var i = 0; i < SpecialTypeSize; i++)
|
|
{
|
|
writer[offset] = (i == special) ? 1.0f : 0.0f;
|
|
offset++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
else
|
|
{
|
|
// TODO combine loops? Only difference is inner-most statement.
|
|
int offset = 0;
|
|
for (var r = 0; r < m_Rows; r++)
|
|
{
|
|
for (var c = 0; c < m_Columns; c++)
|
|
{
|
|
var val = m_Board.GetCellType(r, c);
|
|
for (var i = 0; i < m_NumCellTypes; i++)
|
|
{
|
|
writer[r, c, i] = (i == val) ? 1.0f : 0.0f;
|
|
offset++;
|
|
}
|
|
|
|
if (m_NumSpecialTypes > 0)
|
|
{
|
|
var special = m_Board.GetSpecialType(r, c);
|
|
for (var i = 0; i < SpecialTypeSize; i++)
|
|
{
|
|
writer[offset] = (i == special) ? 1.0f : 0.0f;
|
|
offset++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
}
|
|
|
|
/// <inheritdoc/>
|
|
public byte[] GetCompressedObservation()
|
|
{
|
|
var height = m_Rows;
|
|
var width = m_Columns;
|
|
var tempTexture = new Texture2D(width, height, TextureFormat.RGB24, false);
|
|
var converter = new OneHotToTextureUtil(height, width);
|
|
var bytesOut = new List<byte>();
|
|
|
|
// Encode the cell types and special types as separate batches of PNGs
|
|
// This is potentially wasteful, e.g. if there are 4 cell types and 1 special type, we could
|
|
// fit in in 2 images, but we'll use 3 here (2 PNGs for the 4 cell type channels, and 1 for
|
|
// the special types). Note that we have to also implement the sparse channel mapping.
|
|
// Optimize this it later.
|
|
var numCellImages = (m_NumCellTypes + 2) / 3;
|
|
for (var i = 0; i < numCellImages; i++)
|
|
{
|
|
converter.EncodeToTexture(m_Board.GetCellType, tempTexture, 3 * i);
|
|
bytesOut.AddRange(tempTexture.EncodeToPNG());
|
|
}
|
|
|
|
var numSpecialImages = (SpecialTypeSize + 2) / 3;
|
|
for (var i = 0; i < numSpecialImages; i++)
|
|
{
|
|
converter.EncodeToTexture(m_Board.GetSpecialType, tempTexture, 3 * i);
|
|
bytesOut.AddRange(tempTexture.EncodeToPNG());
|
|
}
|
|
|
|
DestroyTexture(tempTexture);
|
|
return bytesOut.ToArray();
|
|
}
|
|
|
|
/// <inheritdoc/>
|
|
public void Update()
|
|
{
|
|
}
|
|
|
|
/// <inheritdoc/>
|
|
public void Reset()
|
|
{
|
|
}
|
|
|
|
/// <inheritdoc/>
|
|
public SensorCompressionType GetCompressionType()
|
|
{
|
|
return m_ObservationType == Match3ObservationType.CompressedVisual ?
|
|
SensorCompressionType.PNG :
|
|
SensorCompressionType.None;
|
|
}
|
|
|
|
/// <inheritdoc/>
|
|
public string GetName()
|
|
{
|
|
return m_Name;
|
|
}
|
|
|
|
/// <inheritdoc/>
|
|
public int[] GetCompressedChannelMapping()
|
|
{
|
|
return m_SparseChannelMapping;
|
|
}
|
|
|
|
/// <inheritdoc/>
|
|
public BuiltInSensorType GetBuiltInSensorType()
|
|
{
|
|
return BuiltInSensorType.Match3Sensor;
|
|
}
|
|
|
|
static void DestroyTexture(Texture2D texture)
|
|
{
|
|
if (Application.isEditor)
|
|
{
|
|
// Edit Mode tests complain if we use Destroy()
|
|
Object.DestroyImmediate(texture);
|
|
}
|
|
else
|
|
{
|
|
Object.Destroy(texture);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Utility class for converting a 2D array of ints representing a one-hot encoding into
|
|
/// a texture, suitable for conversion to PNGs for observations.
|
|
/// Works by encoding 3 values at a time as pixels in the texture, thus it should be
|
|
/// called (maxValue + 2) / 3 times, increasing the channelOffset by 3 each time.
|
|
/// </summary>
|
|
internal class OneHotToTextureUtil
|
|
{
|
|
Color[] m_Colors;
|
|
int m_Height;
|
|
int m_Width;
|
|
private static Color[] s_OneHotColors = { Color.red, Color.green, Color.blue };
|
|
|
|
public delegate int GridValueProvider(int x, int y);
|
|
|
|
|
|
public OneHotToTextureUtil(int height, int width)
|
|
{
|
|
m_Colors = new Color[height * width];
|
|
m_Height = height;
|
|
m_Width = width;
|
|
}
|
|
|
|
public void EncodeToTexture(GridValueProvider gridValueProvider, Texture2D texture, int channelOffset)
|
|
{
|
|
var i = 0;
|
|
// There's an implicit flip converting to PNG from texture, so make sure we
|
|
// counteract that when forming the texture by iterating through h in reverse.
|
|
for (var h = m_Height - 1; h >= 0; h--)
|
|
{
|
|
for (var w = 0; w < m_Width; w++)
|
|
{
|
|
int oneHotValue = gridValueProvider(h, w);
|
|
if (oneHotValue < channelOffset || oneHotValue >= channelOffset + 3)
|
|
{
|
|
m_Colors[i++] = Color.black;
|
|
}
|
|
else
|
|
{
|
|
m_Colors[i++] = s_OneHotColors[oneHotValue - channelOffset];
|
|
}
|
|
}
|
|
}
|
|
texture.SetPixels(m_Colors);
|
|
}
|
|
}
|
|
}
|