Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

61 行
1.5 KiB

behaviors:
3DBallHard:
trainer_type: sac_transfer
hyperparameters:
learning_rate: 0.0003
learning_rate_schedule: linear
batch_size: 256
buffer_size: 500000
buffer_init_steps: 0
tau: 0.005
steps_per_update: 10.0
save_replay_buffer: false
init_entcoef: 1.0
reward_signal_steps_per_update: 10.0
encoder_layers: 2
policy_layers: 0
forward_layers: 0
value_layers: 1
feature_size: 64
action_layers: 1
action_feature_size: 32
# separate_value_net: true
separate_policy_train: true
separate_model_train: true
# separate_value_train: true
reuse_encoder: true
in_epoch_alter: false
in_batch_alter: true
use_op_buffer: false
use_var_predict: true
with_prior: false
predict_return: true
use_bisim: false
use_transfer: true
load_model: false
load_encoder: true
train_encoder: false
load_action: true
train_action: false
transfer_path: "results/ball-s2/3DBall"
network_settings:
normalize: true
hidden_units: 128
num_layers: 2
vis_encode_type: simple
reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0
keep_checkpoints: 5
max_steps: 500000
time_horizon: 1000
summary_freq: 12000
threaded: true
parameter_randomization:
mass:
sampler_type: uniform
sampler_parameters:
min_value: 2.0
max_value: 2.0