Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

300 行
12 KiB

# # Unity ML-Agents Toolkit
# ## ML-Agent Learning (PPO)
# Contains an implementation of PPO as described in: https://arxiv.org/abs/1707.06347
import logging
from collections import defaultdict
import numpy as np
from mlagents.trainers.common.nn_policy import NNPolicy
from mlagents.trainers.ppo.multi_gpu_policy import MultiGpuNNPolicy, get_devices
from mlagents.trainers.rl_trainer import RLTrainer
from mlagents.trainers.brain import BrainParameters
from mlagents.trainers.tf_policy import TFPolicy
from mlagents.trainers.ppo.optimizer import PPOOptimizer
from mlagents.trainers.trajectory import Trajectory
logger = logging.getLogger("mlagents.trainers")
class PPOTrainer(RLTrainer):
"""The PPOTrainer is an implementation of the PPO algorithm."""
def __init__(
self,
brain_name: str,
reward_buff_cap: int,
trainer_parameters: dict,
training: bool,
load: bool,
seed: int,
run_id: str,
multi_gpu: bool,
):
"""
Responsible for collecting experiences and training PPO model.
:param brain_name: The name of the brain associated with trainer config
:param reward_buff_cap: Max reward history to track in the reward buffer
:param trainer_parameters: The parameters for the trainer (dictionary).
:param training: Whether the trainer is set for training.
:param load: Whether the model should be loaded.
:param seed: The seed the model will be initialized with
:param run_id: The identifier of the current run
:param multi_gpu: Boolean for multi-gpu policy model
"""
super(PPOTrainer, self).__init__(
brain_name, trainer_parameters, training, run_id, reward_buff_cap
)
self.param_keys = [
"batch_size",
"beta",
"buffer_size",
"epsilon",
"hidden_units",
"lambd",
"learning_rate",
"max_steps",
"normalize",
"num_epoch",
"num_layers",
"time_horizon",
"sequence_length",
"summary_freq",
"use_recurrent",
"summary_path",
"memory_size",
"model_path",
"reward_signals",
]
self._check_param_keys()
self.load = load
self.multi_gpu = multi_gpu
self.seed = seed
self.policy: NNPolicy = None # type: ignore
def _process_trajectory(self, trajectory: Trajectory) -> None:
"""
Takes a trajectory and processes it, putting it into the update buffer.
Processing involves calculating value and advantage targets for model updating step.
:param trajectory: The Trajectory tuple containing the steps to be processed.
"""
super()._process_trajectory(trajectory)
agent_id = trajectory.agent_id # All the agents should have the same ID
# Add to episode_steps
self.episode_steps[agent_id] += len(trajectory.steps)
agent_buffer_trajectory = trajectory.to_agentbuffer()
# Update the normalization
if self.is_training:
self.policy.update_normalization(agent_buffer_trajectory["vector_obs"])
# Get all value estimates
value_estimates, value_next = self.optimizer.get_trajectory_value_estimates(
agent_buffer_trajectory,
trajectory.next_obs,
trajectory.done_reached and not trajectory.max_step_reached,
)
for name, v in value_estimates.items():
agent_buffer_trajectory["{}_value_estimates".format(name)].extend(v)
self.stats_reporter.add_stat(
self.optimizer.reward_signals[name].value_name, np.mean(v)
)
# Evaluate all reward functions
self.collected_rewards["environment"][agent_id] += np.sum(
agent_buffer_trajectory["environment_rewards"]
)
for name, reward_signal in self.optimizer.reward_signals.items():
evaluate_result = reward_signal.evaluate_batch(
agent_buffer_trajectory
).scaled_reward
agent_buffer_trajectory["{}_rewards".format(name)].extend(evaluate_result)
# Report the reward signals
self.collected_rewards[name][agent_id] += np.sum(evaluate_result)
# Compute GAE and returns
tmp_advantages = []
tmp_returns = []
for name in self.optimizer.reward_signals:
bootstrap_value = value_next[name]
local_rewards = agent_buffer_trajectory[
"{}_rewards".format(name)
].get_batch()
local_value_estimates = agent_buffer_trajectory[
"{}_value_estimates".format(name)
].get_batch()
local_advantage = get_gae(
rewards=local_rewards,
value_estimates=local_value_estimates,
value_next=bootstrap_value,
gamma=self.optimizer.reward_signals[name].gamma,
lambd=self.trainer_parameters["lambd"],
)
local_return = local_advantage + local_value_estimates
# This is later use as target for the different value estimates
agent_buffer_trajectory["{}_returns".format(name)].set(local_return)
agent_buffer_trajectory["{}_advantage".format(name)].set(local_advantage)
tmp_advantages.append(local_advantage)
tmp_returns.append(local_return)
# Get global advantages
global_advantages = list(
np.mean(np.array(tmp_advantages, dtype=np.float32), axis=0)
)
global_returns = list(np.mean(np.array(tmp_returns, dtype=np.float32), axis=0))
agent_buffer_trajectory["advantages"].set(global_advantages)
agent_buffer_trajectory["discounted_returns"].set(global_returns)
# Append to update buffer
agent_buffer_trajectory.resequence_and_append(
self.update_buffer, training_length=self.policy.sequence_length
)
# If this was a terminal trajectory, append stats and reset reward collection
if trajectory.done_reached:
self._update_end_episode_stats(agent_id, self.optimizer)
def _is_ready_update(self):
"""
Returns whether or not the trainer has enough elements to run update model
:return: A boolean corresponding to whether or not update_model() can be run
"""
size_of_buffer = self.update_buffer.num_experiences
return size_of_buffer > self.trainer_parameters["buffer_size"]
def _update_policy(self):
"""
Uses demonstration_buffer to update the policy.
The reward signal generators must be updated in this method at their own pace.
"""
buffer_length = self.update_buffer.num_experiences
self.cumulative_returns_since_policy_update.clear()
# Make sure batch_size is a multiple of sequence length. During training, we
# will need to reshape the data into a batch_size x sequence_length tensor.
batch_size = (
self.trainer_parameters["batch_size"]
- self.trainer_parameters["batch_size"] % self.policy.sequence_length
)
# Make sure there is at least one sequence
batch_size = max(batch_size, self.policy.sequence_length)
n_sequences = max(
int(self.trainer_parameters["batch_size"] / self.policy.sequence_length), 1
)
advantages = self.update_buffer["advantages"].get_batch()
self.update_buffer["advantages"].set(
(advantages - advantages.mean()) / (advantages.std() + 1e-10)
)
num_epoch = self.trainer_parameters["num_epoch"]
batch_update_stats = defaultdict(list)
for _ in range(num_epoch):
self.update_buffer.shuffle(sequence_length=self.policy.sequence_length)
buffer = self.update_buffer
max_num_batch = buffer_length // batch_size
for l in range(0, max_num_batch * batch_size, batch_size):
update_stats = self.optimizer.update(
buffer.make_mini_batch(l, l + batch_size), n_sequences
)
for stat_name, value in update_stats.items():
batch_update_stats[stat_name].append(value)
for stat, stat_list in batch_update_stats.items():
self.stats_reporter.add_stat(stat, np.mean(stat_list))
if self.optimizer.bc_module:
update_stats = self.optimizer.bc_module.update()
for stat, val in update_stats.items():
self.stats_reporter.add_stat(stat, val)
self.clear_update_buffer()
def create_policy(self, brain_parameters: BrainParameters) -> TFPolicy:
"""
Creates a PPO policy to trainers list of policies.
:param brain_parameters: specifications for policy construction
:return policy
"""
if self.multi_gpu and len(get_devices()) > 1:
policy: NNPolicy = MultiGpuNNPolicy(
self.seed,
brain_parameters,
self.trainer_parameters,
self.is_training,
self.load,
)
else:
policy = NNPolicy(
self.seed,
brain_parameters,
self.trainer_parameters,
self.is_training,
self.load,
create_tf_graph=False, # We will create the TF graph in the Optimizer
)
return policy
def add_policy(self, name_behavior_id: str, policy: TFPolicy) -> None:
"""
Adds policy to trainer.
:param brain_parameters: specifications for policy construction
"""
if self.policy:
logger.warning(
"add_policy has been called twice. {} is not a multi-agent trainer".format(
self.__class__.__name__
)
)
if not isinstance(policy, NNPolicy):
raise RuntimeError("Non-NNPolicy passed to PPOTrainer.add_policy()")
self.policy = policy
self.optimizer = PPOOptimizer(self.policy, self.trainer_parameters)
for _reward_signal in self.optimizer.reward_signals.keys():
self.collected_rewards[_reward_signal] = defaultdict(lambda: 0)
# Needed to resume loads properly
self.step = policy.get_current_step()
self.next_summary_step = self._get_next_summary_step()
def get_policy(self, name_behavior_id: str) -> TFPolicy:
"""
Gets policy from trainer associated with name_behavior_id
:param name_behavior_id: full identifier of policy
"""
return self.policy
def discount_rewards(r, gamma=0.99, value_next=0.0):
"""
Computes discounted sum of future rewards for use in updating value estimate.
:param r: List of rewards.
:param gamma: Discount factor.
:param value_next: T+1 value estimate for returns calculation.
:return: discounted sum of future rewards as list.
"""
discounted_r = np.zeros_like(r)
running_add = value_next
for t in reversed(range(0, r.size)):
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
def get_gae(rewards, value_estimates, value_next=0.0, gamma=0.99, lambd=0.95):
"""
Computes generalized advantage estimate for use in updating policy.
:param rewards: list of rewards for time-steps t to T.
:param value_next: Value estimate for time-step T+1.
:param value_estimates: list of value estimates for time-steps t to T.
:param gamma: Discount factor.
:param lambd: GAE weighing factor.
:return: list of advantage estimates for time-steps t to T.
"""
value_estimates = np.append(value_estimates, value_next)
delta_t = rewards + gamma * value_estimates[1:] - value_estimates[:-1]
advantage = discount_rewards(r=delta_t, gamma=gamma * lambd)
return advantage