Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

372 行
14 KiB

import logging
import numpy as np
from typing import Any, Dict, Optional, List
from mlagents.tf_utils import tf
from mlagents_envs.timers import timed
from mlagents_envs.base_env import BatchedStepResult
from mlagents.trainers.brain import BrainParameters
from mlagents.trainers.models import EncoderType
from mlagents.trainers.models import LearningModel
from mlagents.trainers.tf_policy import TFPolicy
logger = logging.getLogger("mlagents.trainers")
LOG_STD_MAX = 2
LOG_STD_MIN = -20
EPSILON = 1e-6 # Small value to avoid divide by zero
class NNPolicy(TFPolicy):
def __init__(
self,
seed: int,
brain: BrainParameters,
trainer_params: Dict[str, Any],
is_training: bool,
load: bool,
tanh_squash: bool = False,
resample: bool = False,
create_tf_graph: bool = True,
):
"""
Policy that uses a multilayer perceptron to map the observations to actions. Could
also use a CNN to encode visual input prior to the MLP. Supports discrete and
continuous action spaces, as well as recurrent networks.
:param seed: Random seed.
:param brain: Assigned BrainParameters object.
:param trainer_params: Defined training parameters.
:param is_training: Whether the model should be trained.
:param load: Whether a pre-trained model will be loaded or a new one created.
:param tanh_squash: Whether to use a tanh function on the continuous output, or a clipped output.
:param resample: Whether we are using the resampling trick to update the policy in continuous output.
"""
super().__init__(seed, brain, trainer_params, load)
self.stats_name_to_update_name = {
"Losses/Value Loss": "value_loss",
"Losses/Policy Loss": "policy_loss",
}
self.optimizer: Optional[tf.train.AdamOptimizer] = None
self.grads = None
self.update_batch: Optional[tf.Operation] = None
num_layers = trainer_params["num_layers"]
self.h_size = trainer_params["hidden_units"]
if num_layers < 1:
num_layers = 1
self.num_layers = num_layers
self.vis_encode_type = EncoderType(
trainer_params.get("vis_encode_type", "simple")
)
self.tanh_squash = tanh_squash
self.resample = resample
self.trainable_variables: List[tf.Variable] = []
if create_tf_graph:
self.create_tf_graph()
def get_trainable_variables(self) -> List[tf.Variable]:
"""
Returns a List of the trainable variables in this policy. if create_tf_graph hasn't been called,
returns empty list.
"""
return self.trainable_variables
def create_tf_graph(self) -> None:
"""
Builds the tensorflow graph needed for this policy.
"""
with self.graph.as_default():
self.create_input_placeholders()
if self.use_continuous_act:
self.create_cc_actor(
self.h_size,
self.num_layers,
self.vis_encode_type,
self.tanh_squash,
self.resample,
)
else:
self.create_dc_actor(self.h_size, self.num_layers, self.vis_encode_type)
self.trainable_variables = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope="policy"
)
self.inference_dict: Dict[str, tf.Tensor] = {
"action": self.output,
"log_probs": self.all_log_probs,
"entropy": self.entropy,
}
if self.use_continuous_act:
self.inference_dict["pre_action"] = self.output_pre
if self.use_recurrent:
self.inference_dict["memory_out"] = self.memory_out
# We do an initialize to make the Policy usable out of the box. If an optimizer is needed,
# it will re-load the full graph
self._initialize_graph()
@timed
def evaluate(
self, batched_step_result: BatchedStepResult, global_agent_ids: List[str]
) -> Dict[str, Any]:
"""
Evaluates policy for the agent experiences provided.
:param batched_step_result: BatchedStepResult object containing inputs.
:param global_agent_ids: The global (with worker ID) agent ids of the data in the batched_step_result.
:return: Outputs from network as defined by self.inference_dict.
"""
feed_dict = {
self.batch_size_ph: batched_step_result.n_agents(),
self.sequence_length_ph: 1,
}
if self.use_recurrent:
if not self.use_continuous_act:
feed_dict[self.prev_action] = self.retrieve_previous_action(
global_agent_ids
)
feed_dict[self.memory_in] = self.retrieve_memories(global_agent_ids)
feed_dict = self.fill_eval_dict(feed_dict, batched_step_result)
run_out = self._execute_model(feed_dict, self.inference_dict)
return run_out
def create_cc_actor(
self,
h_size: int,
num_layers: int,
vis_encode_type: EncoderType,
tanh_squash: bool = False,
resample: bool = False,
) -> None:
"""
Creates Continuous control actor-critic model.
:param h_size: Size of hidden linear layers.
:param num_layers: Number of hidden linear layers.
:param vis_encode_type: Type of visual encoder to use if visual input.
:param tanh_squash: Whether to use a tanh function, or a clipped output.
:param resample: Whether we are using the resampling trick to update the policy.
"""
with tf.variable_scope("policy"):
hidden_stream = LearningModel.create_observation_streams(
self.visual_in,
self.processed_vector_in,
1,
h_size,
num_layers,
vis_encode_type,
)[0]
if self.use_recurrent:
self.memory_in = tf.placeholder(
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
)
hidden_policy, memory_policy_out = LearningModel.create_recurrent_encoder(
hidden_stream,
self.memory_in,
self.sequence_length_ph,
name="policy/lstm",
)
self.memory_out = tf.identity(memory_policy_out, name="recurrent_out")
else:
hidden_policy = hidden_stream
with tf.variable_scope("policy"):
mu = tf.layers.dense(
hidden_policy,
self.act_size[0],
activation=None,
name="mu",
kernel_initializer=LearningModel.scaled_init(0.01),
reuse=tf.AUTO_REUSE,
)
# Policy-dependent log_sigma_sq
log_sigma = tf.layers.dense(
hidden_policy,
self.act_size[0],
activation=None,
name="log_std",
kernel_initializer=LearningModel.scaled_init(0.01),
)
log_sigma = tf.clip_by_value(log_sigma, LOG_STD_MIN, LOG_STD_MAX)
sigma = tf.exp(log_sigma)
epsilon = tf.random_normal(tf.shape(mu))
sampled_policy = mu + sigma * epsilon
# Stop gradient if we're not doing the resampling trick
if not resample:
sampled_policy_probs = tf.stop_gradient(sampled_policy)
else:
sampled_policy_probs = sampled_policy
# Compute probability of model output.
_gauss_pre = -0.5 * (
((sampled_policy_probs - mu) / (sigma + EPSILON)) ** 2
+ 2 * log_sigma
+ np.log(2 * np.pi)
)
all_probs = _gauss_pre
all_probs = tf.reduce_sum(_gauss_pre, axis=1, keepdims=True)
if tanh_squash:
self.output_pre = tf.tanh(sampled_policy)
# Squash correction
all_probs -= tf.reduce_sum(
tf.log(1 - self.output_pre ** 2 + EPSILON), axis=1, keepdims=True
)
self.output = tf.identity(self.output_pre, name="action")
else:
self.output_pre = sampled_policy
# Clip and scale output to ensure actions are always within [-1, 1] range.
output_post = tf.clip_by_value(self.output_pre, -3, 3) / 3
self.output = tf.identity(output_post, name="action")
self.selected_actions = tf.stop_gradient(self.output)
self.all_log_probs = tf.identity(all_probs, name="action_probs")
single_dim_entropy = 0.5 * tf.reduce_mean(
tf.log(2 * np.pi * np.e) + tf.square(log_sigma)
)
# Make entropy the right shape
self.entropy = tf.ones_like(tf.reshape(mu[:, 0], [-1])) * single_dim_entropy
# We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control.
self.log_probs = tf.reduce_sum(
(tf.identity(self.all_log_probs)), axis=1, keepdims=True
)
self.action_holder = tf.placeholder(
shape=[None, self.act_size[0]], dtype=tf.float32, name="action_holder"
)
def create_dc_actor(
self, h_size: int, num_layers: int, vis_encode_type: EncoderType
) -> None:
"""
Creates Discrete control actor-critic model.
:param h_size: Size of hidden linear layers.
:param num_layers: Number of hidden linear layers.
:param vis_encode_type: Type of visual encoder to use if visual input.
"""
with tf.variable_scope("policy"):
hidden_stream = LearningModel.create_observation_streams(
self.visual_in,
self.processed_vector_in,
1,
h_size,
num_layers,
vis_encode_type,
)[0]
if self.use_recurrent:
self.prev_action = tf.placeholder(
shape=[None, len(self.act_size)], dtype=tf.int32, name="prev_action"
)
prev_action_oh = tf.concat(
[
tf.one_hot(self.prev_action[:, i], self.act_size[i])
for i in range(len(self.act_size))
],
axis=1,
)
hidden_policy = tf.concat([hidden_stream, prev_action_oh], axis=1)
self.memory_in = tf.placeholder(
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
)
hidden_policy, memory_policy_out = LearningModel.create_recurrent_encoder(
hidden_policy,
self.memory_in,
self.sequence_length_ph,
name="policy/lstm",
)
self.memory_out = tf.identity(memory_policy_out, "recurrent_out")
else:
hidden_policy = hidden_stream
policy_branches = []
with tf.variable_scope("policy"):
for size in self.act_size:
policy_branches.append(
tf.layers.dense(
hidden_policy,
size,
activation=None,
use_bias=False,
kernel_initializer=LearningModel.scaled_init(0.01),
)
)
raw_log_probs = tf.concat(policy_branches, axis=1, name="action_probs")
self.action_masks = tf.placeholder(
shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks"
)
output, self.action_probs, normalized_logits = LearningModel.create_discrete_action_masking_layer(
raw_log_probs, self.action_masks, self.act_size
)
self.output = tf.identity(output)
self.all_log_probs = tf.identity(normalized_logits, name="action")
self.action_holder = tf.placeholder(
shape=[None, len(policy_branches)], dtype=tf.int32, name="action_holder"
)
self.action_oh = tf.concat(
[
tf.one_hot(self.action_holder[:, i], self.act_size[i])
for i in range(len(self.act_size))
],
axis=1,
)
self.selected_actions = tf.stop_gradient(self.action_oh)
action_idx = [0] + list(np.cumsum(self.act_size))
self.entropy = tf.reduce_sum(
(
tf.stack(
[
tf.nn.softmax_cross_entropy_with_logits_v2(
labels=tf.nn.softmax(
self.all_log_probs[:, action_idx[i] : action_idx[i + 1]]
),
logits=self.all_log_probs[
:, action_idx[i] : action_idx[i + 1]
],
)
for i in range(len(self.act_size))
],
axis=1,
)
),
axis=1,
)
self.log_probs = tf.reduce_sum(
(
tf.stack(
[
-tf.nn.softmax_cross_entropy_with_logits_v2(
labels=self.action_oh[:, action_idx[i] : action_idx[i + 1]],
logits=normalized_logits[
:, action_idx[i] : action_idx[i + 1]
],
)
for i in range(len(self.act_size))
],
axis=1,
)
),
axis=1,
keepdims=True,
)