您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
107 行
4.1 KiB
107 行
4.1 KiB
from mlagents.tf_utils import tf
|
|
|
|
from mlagents.trainers.models import LearningModel
|
|
|
|
|
|
class BehavioralCloningModel(LearningModel):
|
|
def __init__(
|
|
self,
|
|
brain,
|
|
h_size=128,
|
|
lr=1e-4,
|
|
n_layers=2,
|
|
m_size=128,
|
|
normalize=False,
|
|
use_recurrent=False,
|
|
seed=0,
|
|
):
|
|
LearningModel.__init__(self, m_size, normalize, use_recurrent, brain, seed)
|
|
num_streams = 1
|
|
hidden_streams = self.create_observation_streams(num_streams, h_size, n_layers)
|
|
hidden = hidden_streams[0]
|
|
self.dropout_rate = tf.placeholder(
|
|
dtype=tf.float32, shape=[], name="dropout_rate"
|
|
)
|
|
hidden_reg = tf.layers.dropout(hidden, self.dropout_rate)
|
|
if self.use_recurrent:
|
|
tf.Variable(
|
|
self.m_size, name="memory_size", trainable=False, dtype=tf.int32
|
|
)
|
|
self.memory_in = tf.placeholder(
|
|
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
|
|
)
|
|
hidden_reg, self.memory_out = self.create_recurrent_encoder(
|
|
hidden_reg, self.memory_in, self.sequence_length
|
|
)
|
|
self.memory_out = tf.identity(self.memory_out, name="recurrent_out")
|
|
|
|
if brain.vector_action_space_type == "discrete":
|
|
policy_branches = []
|
|
for size in self.act_size:
|
|
policy_branches.append(
|
|
tf.layers.dense(
|
|
hidden_reg,
|
|
size,
|
|
activation=None,
|
|
use_bias=False,
|
|
kernel_initializer=tf.initializers.variance_scaling(0.01),
|
|
)
|
|
)
|
|
self.action_probs = tf.concat(
|
|
[tf.nn.softmax(branch) for branch in policy_branches],
|
|
axis=1,
|
|
name="action_probs",
|
|
)
|
|
self.action_masks = tf.placeholder(
|
|
shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks"
|
|
)
|
|
self.sample_action_float, _, normalized_logits = self.create_discrete_action_masking_layer(
|
|
tf.concat(policy_branches, axis=1), self.action_masks, self.act_size
|
|
)
|
|
tf.identity(normalized_logits, name="action")
|
|
self.sample_action = tf.cast(self.sample_action_float, tf.int32)
|
|
self.true_action = tf.placeholder(
|
|
shape=[None, len(policy_branches)],
|
|
dtype=tf.int32,
|
|
name="teacher_action",
|
|
)
|
|
self.action_oh = tf.concat(
|
|
[
|
|
tf.one_hot(self.true_action[:, i], self.act_size[i])
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
self.loss = tf.reduce_sum(
|
|
-tf.log(self.action_probs + 1e-10) * self.action_oh
|
|
)
|
|
self.action_percent = tf.reduce_mean(
|
|
tf.cast(
|
|
tf.equal(
|
|
tf.cast(tf.argmax(self.action_probs, axis=1), tf.int32),
|
|
self.sample_action,
|
|
),
|
|
tf.float32,
|
|
)
|
|
)
|
|
else:
|
|
self.policy = tf.layers.dense(
|
|
hidden_reg,
|
|
self.act_size[0],
|
|
activation=None,
|
|
use_bias=False,
|
|
name="pre_action",
|
|
kernel_initializer=tf.initializers.variance_scaling(0.01),
|
|
)
|
|
self.clipped_sample_action = tf.clip_by_value(self.policy, -1, 1)
|
|
self.sample_action = tf.identity(self.clipped_sample_action, name="action")
|
|
self.true_action = tf.placeholder(
|
|
shape=[None, self.act_size[0]], dtype=tf.float32, name="teacher_action"
|
|
)
|
|
self.clipped_true_action = tf.clip_by_value(self.true_action, -1, 1)
|
|
self.loss = tf.reduce_sum(
|
|
tf.squared_difference(self.clipped_true_action, self.sample_action)
|
|
)
|
|
|
|
optimizer = tf.train.AdamOptimizer(learning_rate=lr)
|
|
self.update = optimizer.minimize(self.loss)
|