您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
608 行
24 KiB
608 行
24 KiB
using System.Collections;
|
|
using System.Collections.Generic;
|
|
using UnityEngine;
|
|
#if UNITY_EDITOR
|
|
using UnityEditor;
|
|
#endif
|
|
using System.Linq;
|
|
#if ENABLE_TENSORFLOW
|
|
using TensorFlow;
|
|
|
|
#endif
|
|
|
|
namespace MLAgents
|
|
{
|
|
/// CoreBrain which decides actions using internally embedded TensorFlow model.
|
|
public class CoreBrainInternal : ScriptableObject, CoreBrain
|
|
{
|
|
[SerializeField] [Tooltip("If checked, the brain will broadcast states and actions to Python.")]
|
|
#pragma warning disable
|
|
private bool broadcast = true;
|
|
#pragma warning restore
|
|
|
|
[System.Serializable]
|
|
private struct TensorFlowAgentPlaceholder
|
|
{
|
|
public enum TensorType
|
|
{
|
|
Integer,
|
|
FloatingPoint
|
|
};
|
|
|
|
public string name;
|
|
public TensorType valueType;
|
|
public float minValue;
|
|
public float maxValue;
|
|
}
|
|
|
|
Batcher brainBatcher;
|
|
|
|
[Tooltip("This must be the bytes file corresponding to the pretrained TensorFlow graph.")]
|
|
/// Modify only in inspector : Reference to the Graph asset
|
|
public TextAsset graphModel;
|
|
|
|
/// Modify only in inspector : If a scope was used when training the model, specify it here
|
|
public string graphScope;
|
|
|
|
[SerializeField]
|
|
[Tooltip(
|
|
"If your graph takes additional inputs that are fixed (example: noise level) you can specify them here.")]
|
|
/// Modify only in inspector : If your graph takes additional inputs that are fixed you can specify them here.
|
|
private TensorFlowAgentPlaceholder[] graphPlaceholders;
|
|
|
|
/// Modify only in inspector : Name of the placholder of the batch size
|
|
public string BatchSizePlaceholderName = "batch_size";
|
|
|
|
/// Modify only in inspector : Name of the state placeholder
|
|
public string VectorObservationPlacholderName = "vector_observation";
|
|
|
|
/// Modify only in inspector : Name of the recurrent input
|
|
public string RecurrentInPlaceholderName = "recurrent_in";
|
|
|
|
/// Modify only in inspector : Name of the recurrent output
|
|
public string RecurrentOutPlaceholderName = "recurrent_out";
|
|
|
|
/// Modify only in inspector : Names of the observations placeholders
|
|
public string[] VisualObservationPlaceholderName;
|
|
|
|
/// Modify only in inspector : Name of the action node
|
|
public string ActionPlaceholderName = "action";
|
|
|
|
/// Modify only in inspector : Name of the previous action node
|
|
public string PreviousActionPlaceholderName = "prev_action";
|
|
#if ENABLE_TENSORFLOW
|
|
TFGraph graph;
|
|
TFSession session;
|
|
bool hasRecurrent;
|
|
bool hasState;
|
|
bool hasBatchSize;
|
|
bool hasPrevAction;
|
|
float[,] inputState;
|
|
int[] inputPrevAction;
|
|
List<float[,,,]> observationMatrixList;
|
|
float[,] inputOldMemories;
|
|
List<Texture2D> texturesHolder;
|
|
int memorySize;
|
|
#endif
|
|
|
|
/// Reference to the brain that uses this CoreBrainInternal
|
|
public Brain brain;
|
|
|
|
/// Create the reference to the brain
|
|
public void SetBrain(Brain b)
|
|
{
|
|
brain = b;
|
|
}
|
|
|
|
/// Loads the tensorflow graph model to generate a TFGraph object
|
|
public void InitializeCoreBrain(MLAgents.Batcher brainBatcher)
|
|
{
|
|
#if ENABLE_TENSORFLOW
|
|
#if UNITY_ANDROID
|
|
// This needs to ba called only once and will raise an exception if
|
|
// there are multiple internal brains
|
|
try{
|
|
TensorFlowSharp.Android.NativeBinding.Init();
|
|
}
|
|
catch{
|
|
|
|
}
|
|
#endif
|
|
if ((brainBatcher == null)
|
|
|| (!broadcast))
|
|
{
|
|
this.brainBatcher = null;
|
|
}
|
|
else
|
|
{
|
|
this.brainBatcher = brainBatcher;
|
|
this.brainBatcher.SubscribeBrain(brain.gameObject.name);
|
|
}
|
|
|
|
if (graphModel != null)
|
|
{
|
|
graph = new TFGraph();
|
|
|
|
graph.Import(graphModel.bytes);
|
|
|
|
session = new TFSession(graph);
|
|
|
|
// TODO: Make this a loop over a dynamic set of graph inputs
|
|
|
|
if ((graphScope.Length > 1) && (graphScope[graphScope.Length - 1] != '/'))
|
|
{
|
|
graphScope = graphScope + '/';
|
|
}
|
|
|
|
if (graph[graphScope + BatchSizePlaceholderName] != null)
|
|
{
|
|
hasBatchSize = true;
|
|
}
|
|
|
|
if ((graph[graphScope + RecurrentInPlaceholderName] != null) &&
|
|
(graph[graphScope + RecurrentOutPlaceholderName] != null))
|
|
{
|
|
hasRecurrent = true;
|
|
var runner = session.GetRunner();
|
|
runner.Fetch(graph[graphScope + "memory_size"][0]);
|
|
var networkOutput = runner.Run()[0].GetValue();
|
|
memorySize = (int) networkOutput;
|
|
}
|
|
|
|
if (graph[graphScope + VectorObservationPlacholderName] != null)
|
|
{
|
|
hasState = true;
|
|
}
|
|
|
|
if (graph[graphScope + PreviousActionPlaceholderName] != null)
|
|
{
|
|
hasPrevAction = true;
|
|
}
|
|
}
|
|
|
|
observationMatrixList = new List<float[,,,]>();
|
|
texturesHolder = new List<Texture2D>();
|
|
#endif
|
|
}
|
|
|
|
|
|
/// Uses the stored information to run the tensorflow graph and generate
|
|
/// the actions.
|
|
public void DecideAction(Dictionary<Agent, AgentInfo> agentInfo)
|
|
{
|
|
#if ENABLE_TENSORFLOW
|
|
if (brainBatcher != null)
|
|
{
|
|
brainBatcher.SendBrainInfo(brain.gameObject.name, agentInfo);
|
|
}
|
|
|
|
int currentBatchSize = agentInfo.Count();
|
|
List<Agent> agentList = agentInfo.Keys.ToList();
|
|
if (currentBatchSize == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
|
|
// Create the state tensor
|
|
if (hasState)
|
|
{
|
|
int stateLength = 1;
|
|
stateLength = brain.brainParameters.vectorObservationSize;
|
|
inputState =
|
|
new float[currentBatchSize, stateLength * brain.brainParameters.numStackedVectorObservations];
|
|
|
|
var i = 0;
|
|
foreach (Agent agent in agentList)
|
|
{
|
|
List<float> stateList = agentInfo[agent].stackedVectorObservation;
|
|
for (int j =
|
|
0;
|
|
j < stateLength * brain.brainParameters.numStackedVectorObservations;
|
|
j++)
|
|
{
|
|
inputState[i, j] = stateList[j];
|
|
}
|
|
|
|
i++;
|
|
}
|
|
}
|
|
|
|
// Create the state tensor
|
|
if (hasPrevAction)
|
|
{
|
|
inputPrevAction = new int[currentBatchSize];
|
|
var i = 0;
|
|
foreach (Agent agent in agentList)
|
|
{
|
|
float[] actionList = agentInfo[agent].storedVectorActions;
|
|
inputPrevAction[i] = Mathf.FloorToInt(actionList[0]);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
|
|
observationMatrixList.Clear();
|
|
for (int observationIndex =
|
|
0;
|
|
observationIndex < brain.brainParameters.cameraResolutions.Length;
|
|
observationIndex++)
|
|
{
|
|
texturesHolder.Clear();
|
|
foreach (Agent agent in agentList)
|
|
{
|
|
texturesHolder.Add(agentInfo[agent].visualObservations[observationIndex]);
|
|
}
|
|
|
|
observationMatrixList.Add(
|
|
BatchVisualObservations(texturesHolder,
|
|
brain.brainParameters.cameraResolutions[observationIndex].blackAndWhite));
|
|
}
|
|
|
|
// Create the recurrent tensor
|
|
if (hasRecurrent)
|
|
{
|
|
// Need to have variable memory size
|
|
inputOldMemories = new float[currentBatchSize, memorySize];
|
|
var i = 0;
|
|
foreach (Agent agent in agentList)
|
|
{
|
|
float[] m = agentInfo[agent].memories.ToArray();
|
|
for (int j = 0; j < m.Length; j++)
|
|
{
|
|
inputOldMemories[i, j] = m[j];
|
|
}
|
|
|
|
i++;
|
|
}
|
|
}
|
|
|
|
|
|
var runner = session.GetRunner();
|
|
try
|
|
{
|
|
runner.Fetch(graph[graphScope + ActionPlaceholderName][0]);
|
|
}
|
|
catch
|
|
{
|
|
throw new UnityAgentsException(string.Format(
|
|
@"The node {0} could not be found. Please make sure the graphScope {1} is correct",
|
|
graphScope + ActionPlaceholderName, graphScope));
|
|
}
|
|
|
|
if (hasBatchSize)
|
|
{
|
|
runner.AddInput(graph[graphScope + BatchSizePlaceholderName][0], new int[] {currentBatchSize});
|
|
}
|
|
|
|
foreach (TensorFlowAgentPlaceholder placeholder in graphPlaceholders)
|
|
{
|
|
try
|
|
{
|
|
if (placeholder.valueType == TensorFlowAgentPlaceholder.TensorType.FloatingPoint)
|
|
{
|
|
runner.AddInput(graph[graphScope + placeholder.name][0],
|
|
new float[] {Random.Range(placeholder.minValue, placeholder.maxValue)});
|
|
}
|
|
else if (placeholder.valueType == TensorFlowAgentPlaceholder.TensorType.Integer)
|
|
{
|
|
runner.AddInput(graph[graphScope + placeholder.name][0],
|
|
new int[] {Random.Range((int) placeholder.minValue, (int) placeholder.maxValue + 1)});
|
|
}
|
|
}
|
|
catch
|
|
{
|
|
throw new UnityAgentsException(string.Format(
|
|
@"One of the Tensorflow placeholder cound nout be found.
|
|
In brain {0}, there are no {1} placeholder named {2}.",
|
|
brain.gameObject.name, placeholder.valueType.ToString(), graphScope + placeholder.name));
|
|
}
|
|
}
|
|
|
|
// Create the state tensor
|
|
if (hasState)
|
|
{
|
|
runner.AddInput(graph[graphScope + VectorObservationPlacholderName][0], inputState);
|
|
}
|
|
|
|
// Create the previous action tensor
|
|
if (hasPrevAction)
|
|
{
|
|
runner.AddInput(graph[graphScope + PreviousActionPlaceholderName][0], inputPrevAction);
|
|
}
|
|
|
|
// Create the observation tensors
|
|
for (int obsNumber =
|
|
0;
|
|
obsNumber < brain.brainParameters.cameraResolutions.Length;
|
|
obsNumber++)
|
|
{
|
|
runner.AddInput(graph[graphScope + VisualObservationPlaceholderName[obsNumber]][0],
|
|
observationMatrixList[obsNumber]);
|
|
}
|
|
|
|
if (hasRecurrent)
|
|
{
|
|
runner.AddInput(graph[graphScope + "sequence_length"][0], 1);
|
|
runner.AddInput(graph[graphScope + RecurrentInPlaceholderName][0], inputOldMemories);
|
|
runner.Fetch(graph[graphScope + RecurrentOutPlaceholderName][0]);
|
|
}
|
|
|
|
TFTensor[] networkOutput;
|
|
try
|
|
{
|
|
networkOutput = runner.Run();
|
|
}
|
|
catch (TFException e)
|
|
{
|
|
string errorMessage = e.Message;
|
|
try
|
|
{
|
|
errorMessage =
|
|
$@"The tensorflow graph needs an input for {e.Message.Split(new string[] {"Node: "}, 0)[1].Split('=')[0]} of type {e.Message.Split(new string[] {"dtype="}, 0)[1].Split(',')[0]}";
|
|
}
|
|
finally
|
|
{
|
|
throw new UnityAgentsException(errorMessage);
|
|
}
|
|
}
|
|
|
|
// Create the recurrent tensor
|
|
if (hasRecurrent)
|
|
{
|
|
float[,] recurrentTensor = networkOutput[1].GetValue() as float[,];
|
|
|
|
var i = 0;
|
|
foreach (Agent agent in agentList)
|
|
{
|
|
var m = new float[memorySize];
|
|
for (int j = 0; j < memorySize; j++)
|
|
{
|
|
m[j] = recurrentTensor[i, j];
|
|
}
|
|
|
|
agent.UpdateMemoriesAction(m.ToList());
|
|
i++;
|
|
}
|
|
}
|
|
|
|
if (brain.brainParameters.vectorActionSpaceType == SpaceType.continuous)
|
|
{
|
|
var output = networkOutput[0].GetValue() as float[,];
|
|
var i = 0;
|
|
foreach (Agent agent in agentList)
|
|
{
|
|
var a = new float[brain.brainParameters.vectorActionSize];
|
|
for (int j = 0; j < brain.brainParameters.vectorActionSize; j++)
|
|
{
|
|
a[j] = output[i, j];
|
|
}
|
|
|
|
agent.UpdateVectorAction(a);
|
|
i++;
|
|
}
|
|
}
|
|
else if (brain.brainParameters.vectorActionSpaceType == SpaceType.discrete)
|
|
{
|
|
long[,] output = networkOutput[0].GetValue() as long[,];
|
|
var i = 0;
|
|
foreach (Agent agent in agentList)
|
|
{
|
|
var a = new float[1] {(float) (output[i, 0])};
|
|
agent.UpdateVectorAction(a);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
|
|
#else
|
|
if (agentInfo.Count > 0)
|
|
{
|
|
throw new UnityAgentsException(string.Format(
|
|
@"The brain {0} was set to Internal but the Tensorflow
|
|
library is not present in the Unity project.",
|
|
brain.gameObject.name));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// Displays the parameters of the CoreBrainInternal in the Inspector
|
|
public void OnInspector()
|
|
{
|
|
#if ENABLE_TENSORFLOW && UNITY_EDITOR
|
|
EditorGUILayout.LabelField("", GUI.skin.horizontalSlider);
|
|
broadcast = EditorGUILayout.Toggle(new GUIContent("Broadcast",
|
|
"If checked, the brain will broadcast states and actions to Python."), broadcast);
|
|
|
|
var serializedBrain = new SerializedObject(this);
|
|
GUILayout.Label("Edit the Tensorflow graph parameters here");
|
|
var tfGraphModel = serializedBrain.FindProperty("graphModel");
|
|
serializedBrain.Update();
|
|
EditorGUILayout.ObjectField(tfGraphModel);
|
|
serializedBrain.ApplyModifiedProperties();
|
|
|
|
if (graphModel == null)
|
|
{
|
|
EditorGUILayout.HelpBox("Please provide a tensorflow graph as a bytes file.", MessageType.Error);
|
|
}
|
|
|
|
|
|
graphScope =
|
|
EditorGUILayout.TextField(new GUIContent("Graph Scope",
|
|
"If you set a scope while training your tensorflow model, " +
|
|
"all your placeholder name will have a prefix. You must specify that prefix here."), graphScope);
|
|
|
|
if (BatchSizePlaceholderName == "")
|
|
{
|
|
BatchSizePlaceholderName = "batch_size";
|
|
}
|
|
|
|
BatchSizePlaceholderName =
|
|
EditorGUILayout.TextField(new GUIContent("Batch Size Node Name", "If the batch size is one of " +
|
|
"the inputs of your graph, you must specify the name if the placeholder here."),
|
|
BatchSizePlaceholderName);
|
|
if (VectorObservationPlacholderName == "")
|
|
{
|
|
VectorObservationPlacholderName = "state";
|
|
}
|
|
|
|
VectorObservationPlacholderName =
|
|
EditorGUILayout.TextField(new GUIContent("Vector Observation Node Name",
|
|
"If your graph uses the state as an input, " +
|
|
"you must specify the name if the placeholder here."), VectorObservationPlacholderName);
|
|
if (RecurrentInPlaceholderName == "")
|
|
{
|
|
RecurrentInPlaceholderName = "recurrent_in";
|
|
}
|
|
|
|
RecurrentInPlaceholderName =
|
|
EditorGUILayout.TextField(new GUIContent("Recurrent Input Node Name", "If your graph uses a " +
|
|
"recurrent input / memory as input and outputs new recurrent input / memory, " +
|
|
"you must specify the name if the input placeholder here."),
|
|
RecurrentInPlaceholderName);
|
|
if (RecurrentOutPlaceholderName == "")
|
|
{
|
|
RecurrentOutPlaceholderName = "recurrent_out";
|
|
}
|
|
|
|
RecurrentOutPlaceholderName =
|
|
EditorGUILayout.TextField(new GUIContent("Recurrent Output Node Name", " If your graph uses a " +
|
|
"recurrent input / memory as input and outputs new recurrent input / memory, you must specify the name if " +
|
|
"the output placeholder here."),
|
|
RecurrentOutPlaceholderName);
|
|
|
|
if (brain.brainParameters.cameraResolutions != null)
|
|
{
|
|
if (brain.brainParameters.cameraResolutions.Count() > 0)
|
|
{
|
|
if (VisualObservationPlaceholderName == null)
|
|
{
|
|
VisualObservationPlaceholderName =
|
|
new string[brain.brainParameters.cameraResolutions.Count()];
|
|
}
|
|
|
|
if (VisualObservationPlaceholderName.Count() != brain.brainParameters.cameraResolutions.Count())
|
|
{
|
|
VisualObservationPlaceholderName =
|
|
new string[brain.brainParameters.cameraResolutions.Count()];
|
|
}
|
|
|
|
for (int obs_number =
|
|
0;
|
|
obs_number < brain.brainParameters.cameraResolutions.Count();
|
|
obs_number++)
|
|
{
|
|
if ((VisualObservationPlaceholderName[obs_number] == "") ||
|
|
(VisualObservationPlaceholderName[obs_number] == null))
|
|
{
|
|
VisualObservationPlaceholderName[obs_number] =
|
|
"visual_observation_" + obs_number;
|
|
}
|
|
}
|
|
|
|
var opn = serializedBrain.FindProperty("VisualObservationPlaceholderName");
|
|
serializedBrain.Update();
|
|
EditorGUILayout.PropertyField(opn, true);
|
|
serializedBrain.ApplyModifiedProperties();
|
|
}
|
|
}
|
|
|
|
if (ActionPlaceholderName == "")
|
|
{
|
|
ActionPlaceholderName = "action";
|
|
}
|
|
|
|
ActionPlaceholderName =
|
|
EditorGUILayout.TextField(new GUIContent("Action Node Name", "Specify the name of the " +
|
|
"placeholder corresponding to the actions of the brain in your graph. If the action space type is " +
|
|
"continuous, the output must be a one dimensional tensor of float of length Action Space Size, " +
|
|
"if the action space type is discrete, the output must be a one dimensional tensor of int " +
|
|
"of length 1."), ActionPlaceholderName);
|
|
|
|
|
|
var tfPlaceholders = serializedBrain.FindProperty("graphPlaceholders");
|
|
serializedBrain.Update();
|
|
EditorGUILayout.PropertyField(tfPlaceholders, true);
|
|
serializedBrain.ApplyModifiedProperties();
|
|
#endif
|
|
#if !ENABLE_TENSORFLOW && UNITY_EDITOR
|
|
EditorGUILayout.HelpBox(
|
|
"You need to install and enable the TensorflowSharp plugin in " +
|
|
"order to use the internal brain.", MessageType.Error);
|
|
if (GUILayout.Button("Show me how"))
|
|
{
|
|
Application.OpenURL(
|
|
"https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Getting-Started-with-" +
|
|
"Balance-Ball.md#embedding-the-trained-brain-into-the-unity-environment-experimental");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts a list of Texture2D into a Tensor.
|
|
/// </summary>
|
|
/// <returns>
|
|
/// A 4 dimensional float Tensor of dimension
|
|
/// [batch_size, height, width, channel].
|
|
/// Where batch_size is the number of input textures,
|
|
/// height corresponds to the height of the texture,
|
|
/// width corresponds to the width of the texture,
|
|
/// channel corresponds to the number of channels extracted from the
|
|
/// input textures (based on the input blackAndWhite flag
|
|
/// (3 if the flag is false, 1 otherwise).
|
|
/// The values of the Tensor are between 0 and 1.
|
|
/// </returns>
|
|
/// <param name="textures">
|
|
/// The list of textures to be put into the tensor.
|
|
/// Note that the textures must have same width and height.
|
|
/// </param>
|
|
/// <param name="blackAndWhite">
|
|
/// If set to <c>true</c> the textures
|
|
/// will be converted to grayscale before being stored in the tensor.
|
|
/// </param>
|
|
public static float[,,,] BatchVisualObservations(
|
|
List<Texture2D> textures, bool blackAndWhite)
|
|
{
|
|
int batchSize = textures.Count();
|
|
int width = textures[0].width;
|
|
int height = textures[0].height;
|
|
int pixels = 0;
|
|
if (blackAndWhite)
|
|
pixels = 1;
|
|
else
|
|
pixels = 3;
|
|
float[,,,] result = new float[batchSize, height, width, pixels];
|
|
|
|
for (int b = 0; b < batchSize; b++)
|
|
{
|
|
Color32[] cc = textures[b].GetPixels32();
|
|
for (int w = 0; w < width; w++)
|
|
{
|
|
for (int h = 0; h < height; h++)
|
|
{
|
|
Color32 currentPixel = cc[h * width + w];
|
|
if (!blackAndWhite)
|
|
{
|
|
// For Color32, the r, g and b values are between
|
|
// 0 and 255.
|
|
result[b, textures[b].height - h - 1, w, 0] =
|
|
currentPixel.r / 255.0f;
|
|
result[b, textures[b].height - h - 1, w, 1] =
|
|
currentPixel.g / 255.0f;
|
|
result[b, textures[b].height - h - 1, w, 2] =
|
|
currentPixel.b / 255.0f;
|
|
}
|
|
else
|
|
{
|
|
result[b, textures[b].height - h - 1, w, 0] =
|
|
(currentPixel.r + currentPixel.g + currentPixel.b)
|
|
/ 3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
}
|
|
}
|