您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
130 行
2.8 KiB
130 行
2.8 KiB
default:
|
|
trainer: ppo
|
|
batch_size: 1024
|
|
beta: 5.0e-3
|
|
buffer_size: 10240
|
|
epsilon: 0.2
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
memory_size: 256
|
|
normalize: false
|
|
num_epoch: 3
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
|
|
Pyramids:
|
|
summary_freq: 2000
|
|
time_horizon: 128
|
|
batch_size: 128
|
|
buffer_size: 2048
|
|
hidden_units: 512
|
|
num_layers: 2
|
|
beta: 1.0e-2
|
|
max_steps: 5.0e5
|
|
num_epoch: 3
|
|
behavioral_cloning:
|
|
demo_path: demos/ExpertPyramid.demo
|
|
strength: 0.5
|
|
steps: 10000
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
curiosity:
|
|
strength: 0.02
|
|
gamma: 0.99
|
|
encoding_size: 256
|
|
gail:
|
|
strength: 0.01
|
|
gamma: 0.99
|
|
encoding_size: 128
|
|
demo_path: demos/ExpertPyramid.demo
|
|
|
|
CrawlerStatic:
|
|
normalize: true
|
|
num_epoch: 3
|
|
time_horizon: 1000
|
|
batch_size: 2024
|
|
buffer_size: 20240
|
|
max_steps: 1e6
|
|
summary_freq: 3000
|
|
num_layers: 3
|
|
hidden_units: 512
|
|
behavioral_cloning:
|
|
demo_path: demos/ExpertCrawlerSta.demo
|
|
strength: 0.5
|
|
steps: 5000
|
|
reward_signals:
|
|
gail:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
encoding_size: 128
|
|
demo_path: demos/ExpertCrawlerSta.demo
|
|
|
|
PushBlock:
|
|
max_steps: 5.0e4
|
|
batch_size: 128
|
|
buffer_size: 2048
|
|
beta: 1.0e-2
|
|
hidden_units: 256
|
|
summary_freq: 2000
|
|
time_horizon: 64
|
|
num_layers: 2
|
|
reward_signals:
|
|
gail:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
encoding_size: 128
|
|
demo_path: demos/ExpertPush.demo
|
|
|
|
Hallway:
|
|
use_recurrent: true
|
|
sequence_length: 64
|
|
num_layers: 2
|
|
hidden_units: 128
|
|
memory_size: 256
|
|
beta: 1.0e-2
|
|
num_epoch: 3
|
|
buffer_size: 1024
|
|
batch_size: 128
|
|
max_steps: 5.0e5
|
|
summary_freq: 1000
|
|
time_horizon: 64
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
gail:
|
|
strength: 0.1
|
|
gamma: 0.99
|
|
encoding_size: 128
|
|
demo_path: demos/ExpertHallway.demo
|
|
|
|
FoodCollector:
|
|
batch_size: 64
|
|
summary_freq: 1000
|
|
max_steps: 5.0e4
|
|
use_recurrent: false
|
|
hidden_units: 128
|
|
learning_rate: 3.0e-4
|
|
num_layers: 2
|
|
sequence_length: 32
|
|
reward_signals:
|
|
gail:
|
|
strength: 0.1
|
|
gamma: 0.99
|
|
encoding_size: 128
|
|
demo_path: demos/ExpertFood.demo
|
|
behavioral_cloning:
|
|
demo_path: demos/ExpertFood.demo
|
|
strength: 1.0
|
|
steps: 0
|