Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

57 行
2.5 KiB

# # Unity ML-Agents Toolkit
# ## ML-Agent Learning (Behavioral Cloning)
# Contains an implementation of Behavioral Cloning Algorithm
import logging
import copy
from mlagents.trainers.bc.trainer import BCTrainer
from mlagents.trainers.demo_loader import demo_to_buffer
from mlagents.trainers.trainer import UnityTrainerException
logger = logging.getLogger("mlagents.trainers")
class OfflineBCTrainer(BCTrainer):
"""The OfflineBCTrainer is an implementation of Offline Behavioral Cloning."""
def __init__(self, brain, trainer_parameters, training, load, seed,
run_id):
"""
Responsible for collecting experiences and training PPO model.
:param trainer_parameters: The parameters for the trainer (dictionary).
:param training: Whether the trainer is set for training.
:param load: Whether the model should be loaded.
:param seed: The seed the model will be initialized with
:param run_id: The The identifier of the current run
"""
super(OfflineBCTrainer, self).__init__(
brain, trainer_parameters, training, load, seed, run_id)
self.param_keys = ['batch_size', 'summary_freq', 'max_steps',
'batches_per_epoch', 'use_recurrent',
'hidden_units', 'learning_rate', 'num_layers',
'sequence_length', 'memory_size', 'model_path',
'demo_path']
self.check_param_keys()
self.batches_per_epoch = trainer_parameters['batches_per_epoch']
self.n_sequences = max(int(trainer_parameters['batch_size'] / self.policy.sequence_length),
1)
brain_params, self.demonstration_buffer = demo_to_buffer(
trainer_parameters['demo_path'],
self.policy.sequence_length)
policy_brain = copy.deepcopy(brain.__dict__)
expert_brain = copy.deepcopy(brain_params.__dict__)
policy_brain.pop('brain_name')
expert_brain.pop('brain_name')
if expert_brain != policy_brain:
raise UnityTrainerException("The provided demonstration is not compatible with the "
"brain being used for performance evaluation.")
def __str__(self):
return '''Hyperparameters for the Imitation Trainer of brain {0}: \n{1}'''.format(
self.brain_name, '\n'.join(
['\t{0}:\t{1}'.format(x, self.trainer_parameters[x]) for x in self.param_keys]))