Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

88 行
3.0 KiB

import pytest
from unittest.mock import *
from mlagents.trainers import learn, TrainerController
@pytest.fixture
def basic_options():
return {
"--docker-target-name": "None",
"--env": "None",
"--run-id": "ppo",
"--load": False,
"--train": False,
"--save-freq": "50000",
"--keep-checkpoints": "5",
"--base-port": "5005",
"--num-envs": "1",
"--curriculum": "None",
"--lesson": "0",
"--slow": False,
"--no-graphics": False,
"<trainer-config-path>": "basic_path",
"--debug": False,
"--multi-gpu": False,
"--sampler": None,
}
@patch("mlagents.trainers.learn.SamplerManager")
@patch("mlagents.trainers.learn.SubprocessEnvManager")
@patch("mlagents.trainers.learn.create_environment_factory")
@patch("mlagents.trainers.learn.load_config")
def test_run_training(
load_config, create_environment_factory, subproc_env_mock, sampler_manager_mock
):
mock_env = MagicMock()
mock_env.external_brain_names = []
mock_env.academy_name = "TestAcademyName"
create_environment_factory.return_value = mock_env
trainer_config_mock = MagicMock()
load_config.return_value = trainer_config_mock
mock_init = MagicMock(return_value=None)
with patch.object(TrainerController, "__init__", mock_init):
with patch.object(TrainerController, "start_learning", MagicMock()):
learn.run_training(0, 0, basic_options(), MagicMock())
mock_init.assert_called_once_with(
"./models/ppo-0",
"./summaries",
"ppo-0",
50000,
None,
False,
False,
5,
0,
0,
True,
False,
sampler_manager_mock.return_value,
None,
)
@patch("mlagents.trainers.learn.SamplerManager")
@patch("mlagents.trainers.learn.SubprocessEnvManager")
@patch("mlagents.trainers.learn.create_environment_factory")
@patch("mlagents.trainers.learn.load_config")
def test_docker_target_path(
load_config, create_environment_factory, subproc_env_mock, sampler_manager_mock
):
mock_env = MagicMock()
mock_env.external_brain_names = []
mock_env.academy_name = "TestAcademyName"
create_environment_factory.return_value = mock_env
trainer_config_mock = MagicMock()
load_config.return_value = trainer_config_mock
options_with_docker_target = basic_options()
options_with_docker_target["--docker-target-name"] = "dockertarget"
mock_init = MagicMock(return_value=None)
with patch.object(TrainerController, "__init__", mock_init):
with patch.object(TrainerController, "start_learning", MagicMock()):
learn.run_training(0, 0, options_with_docker_target, MagicMock())
mock_init.assert_called_once()
assert mock_init.call_args[0][0] == "/dockertarget/models/ppo-0"
assert mock_init.call_args[0][1] == "/dockertarget/summaries"