您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
346 行
14 KiB
346 行
14 KiB
# # Unity ML-Agents Toolkit
|
|
|
|
import logging
|
|
|
|
from multiprocessing import Process, Queue
|
|
import os
|
|
import glob
|
|
import shutil
|
|
import numpy as np
|
|
import yaml
|
|
from docopt import docopt
|
|
from typing import Any, Callable, Dict, Optional
|
|
|
|
|
|
from mlagents.trainers.trainer_controller import TrainerController
|
|
from mlagents.trainers.exception import TrainerError
|
|
from mlagents.trainers import MetaCurriculumError, MetaCurriculum
|
|
from mlagents.envs import UnityEnvironment
|
|
from mlagents.envs.sampler_class import SamplerManager
|
|
from mlagents.envs.exception import UnityEnvironmentException, SamplerException
|
|
from mlagents.envs.base_unity_environment import BaseUnityEnvironment
|
|
from mlagents.envs.subprocess_env_manager import SubprocessEnvManager
|
|
|
|
|
|
def run_training(
|
|
sub_id: int, run_seed: int, run_options: Dict[str, Any], process_queue: Queue
|
|
) -> None:
|
|
"""
|
|
Launches training session.
|
|
:param process_queue: Queue used to send signal back to main.
|
|
:param sub_id: Unique id for training session.
|
|
:param run_seed: Random seed used for training.
|
|
:param run_options: Command line arguments for training.
|
|
"""
|
|
# Docker Parameters
|
|
docker_target_name = (
|
|
run_options["--docker-target-name"]
|
|
if run_options["--docker-target-name"] != "None"
|
|
else None
|
|
)
|
|
|
|
# General parameters
|
|
env_path = run_options["--env"] if run_options["--env"] != "None" else None
|
|
run_id = run_options["--run-id"]
|
|
load_model = run_options["--load"]
|
|
train_model = run_options["--train"]
|
|
save_freq = int(run_options["--save-freq"])
|
|
keep_checkpoints = int(run_options["--keep-checkpoints"])
|
|
base_port = int(run_options["--base-port"])
|
|
num_envs = int(run_options["--num-envs"])
|
|
curriculum_folder = (
|
|
run_options["--curriculum"] if run_options["--curriculum"] != "None" else None
|
|
)
|
|
lesson = int(run_options["--lesson"])
|
|
fast_simulation = not bool(run_options["--slow"])
|
|
no_graphics = run_options["--no-graphics"]
|
|
multi_gpu = run_options["--multi-gpu"]
|
|
trainer_config_path = run_options["<trainer-config-path>"]
|
|
sampler_file_path = (
|
|
run_options["--sampler"] if run_options["--sampler"] != "None" else None
|
|
)
|
|
|
|
# Recognize and use docker volume if one is passed as an argument
|
|
if not docker_target_name:
|
|
model_path = "./models/{run_id}-{sub_id}".format(run_id=run_id, sub_id=sub_id)
|
|
summaries_dir = "./summaries"
|
|
else:
|
|
trainer_config_path = "/{docker_target_name}/{trainer_config_path}".format(
|
|
docker_target_name=docker_target_name,
|
|
trainer_config_path=trainer_config_path,
|
|
)
|
|
if curriculum_folder is not None:
|
|
curriculum_folder = "/{docker_target_name}/{curriculum_folder}".format(
|
|
docker_target_name=docker_target_name,
|
|
curriculum_folder=curriculum_folder,
|
|
)
|
|
model_path = "/{docker_target_name}/models/{run_id}-{sub_id}".format(
|
|
docker_target_name=docker_target_name, run_id=run_id, sub_id=sub_id
|
|
)
|
|
summaries_dir = "/{docker_target_name}/summaries".format(
|
|
docker_target_name=docker_target_name
|
|
)
|
|
|
|
trainer_config = load_config(trainer_config_path)
|
|
env_factory = create_environment_factory(
|
|
env_path,
|
|
docker_target_name,
|
|
no_graphics,
|
|
run_seed,
|
|
base_port + (sub_id * num_envs),
|
|
)
|
|
env = SubprocessEnvManager(env_factory, num_envs)
|
|
maybe_meta_curriculum = try_create_meta_curriculum(curriculum_folder, env)
|
|
sampler_manager, resampling_interval = create_sampler_manager(
|
|
sampler_file_path, env.reset_parameters
|
|
)
|
|
|
|
# Create controller and begin training.
|
|
tc = TrainerController(
|
|
model_path,
|
|
summaries_dir,
|
|
run_id + "-" + str(sub_id),
|
|
save_freq,
|
|
maybe_meta_curriculum,
|
|
load_model,
|
|
train_model,
|
|
keep_checkpoints,
|
|
lesson,
|
|
run_seed,
|
|
fast_simulation,
|
|
multi_gpu,
|
|
sampler_manager,
|
|
resampling_interval,
|
|
)
|
|
|
|
# Signal that environment has been launched.
|
|
process_queue.put(True)
|
|
|
|
# Begin training
|
|
tc.start_learning(env, trainer_config)
|
|
|
|
|
|
def create_sampler_manager(sampler_file_path, env_reset_params):
|
|
sampler_config = None
|
|
resample_interval = None
|
|
if sampler_file_path is not None:
|
|
sampler_config = load_config(sampler_file_path)
|
|
if ("resampling-interval") in sampler_config:
|
|
# Filter arguments that do not exist in the environment
|
|
resample_interval = sampler_config.pop("resampling-interval")
|
|
if (resample_interval <= 0) or (not isinstance(resample_interval, int)):
|
|
raise SamplerException(
|
|
"Specified resampling-interval is not valid. Please provide"
|
|
" a positive integer value for resampling-interval"
|
|
)
|
|
else:
|
|
raise SamplerException(
|
|
"Resampling interval was not specified in the sampler file."
|
|
" Please specify it with the 'resampling-interval' key in the sampler config file."
|
|
)
|
|
sampler_manager = SamplerManager(sampler_config)
|
|
return sampler_manager, resample_interval
|
|
|
|
|
|
def try_create_meta_curriculum(
|
|
curriculum_folder: Optional[str], env: SubprocessEnvManager
|
|
) -> Optional[MetaCurriculum]:
|
|
if curriculum_folder is None:
|
|
return None
|
|
else:
|
|
meta_curriculum = MetaCurriculum(curriculum_folder, env.reset_parameters)
|
|
if meta_curriculum:
|
|
for brain_name in meta_curriculum.brains_to_curriculums.keys():
|
|
if brain_name not in env.external_brains.keys():
|
|
raise MetaCurriculumError(
|
|
"One of the curricula "
|
|
"defined in " + curriculum_folder + " "
|
|
"does not have a corresponding "
|
|
"Brain. Check that the "
|
|
"curriculum file has the same "
|
|
"name as the Brain "
|
|
"whose curriculum it defines."
|
|
)
|
|
return meta_curriculum
|
|
|
|
|
|
def prepare_for_docker_run(docker_target_name, env_path):
|
|
for f in glob.glob(
|
|
"/{docker_target_name}/*".format(docker_target_name=docker_target_name)
|
|
):
|
|
if env_path in f:
|
|
try:
|
|
b = os.path.basename(f)
|
|
if os.path.isdir(f):
|
|
shutil.copytree(f, "/ml-agents/{b}".format(b=b))
|
|
else:
|
|
src_f = "/{docker_target_name}/{b}".format(
|
|
docker_target_name=docker_target_name, b=b
|
|
)
|
|
dst_f = "/ml-agents/{b}".format(b=b)
|
|
shutil.copyfile(src_f, dst_f)
|
|
os.chmod(dst_f, 0o775) # Make executable
|
|
except Exception as e:
|
|
logging.getLogger("mlagents.trainers").info(e)
|
|
env_path = "/ml-agents/{env_path}".format(env_path=env_path)
|
|
return env_path
|
|
|
|
|
|
def load_config(trainer_config_path: str) -> Dict[str, Any]:
|
|
try:
|
|
with open(trainer_config_path) as data_file:
|
|
trainer_config = yaml.safe_load(data_file)
|
|
return trainer_config
|
|
except IOError:
|
|
raise UnityEnvironmentException(
|
|
"Parameter file could not be found " "at {}.".format(trainer_config_path)
|
|
)
|
|
except UnicodeDecodeError:
|
|
raise UnityEnvironmentException(
|
|
"There was an error decoding "
|
|
"Trainer Config from this path : {}".format(trainer_config_path)
|
|
)
|
|
|
|
|
|
def create_environment_factory(
|
|
env_path: str,
|
|
docker_target_name: str,
|
|
no_graphics: bool,
|
|
seed: Optional[int],
|
|
start_port: int,
|
|
) -> Callable[[int], BaseUnityEnvironment]:
|
|
if env_path is not None:
|
|
# Strip out executable extensions if passed
|
|
env_path = (
|
|
env_path.strip()
|
|
.replace(".app", "")
|
|
.replace(".exe", "")
|
|
.replace(".x86_64", "")
|
|
.replace(".x86", "")
|
|
)
|
|
docker_training = docker_target_name is not None
|
|
if docker_training and env_path is not None:
|
|
"""
|
|
Comments for future maintenance:
|
|
Some OS/VM instances (e.g. COS GCP Image) mount filesystems
|
|
with COS flag which prevents execution of the Unity scene,
|
|
to get around this, we will copy the executable into the
|
|
container.
|
|
"""
|
|
# Navigate in docker path and find env_path and copy it.
|
|
env_path = prepare_for_docker_run(docker_target_name, env_path)
|
|
seed_count = 10000
|
|
seed_pool = [np.random.randint(0, seed_count) for _ in range(seed_count)]
|
|
|
|
def create_unity_environment(worker_id: int) -> UnityEnvironment:
|
|
env_seed = seed
|
|
if not env_seed:
|
|
env_seed = seed_pool[worker_id % len(seed_pool)]
|
|
return UnityEnvironment(
|
|
file_name=env_path,
|
|
worker_id=worker_id,
|
|
seed=env_seed,
|
|
docker_training=docker_training,
|
|
no_graphics=no_graphics,
|
|
base_port=start_port,
|
|
)
|
|
|
|
return create_unity_environment
|
|
|
|
|
|
def main():
|
|
try:
|
|
print(
|
|
"""
|
|
|
|
▄▄▄▓▓▓▓
|
|
╓▓▓▓▓▓▓█▓▓▓▓▓
|
|
,▄▄▄m▀▀▀' ,▓▓▓▀▓▓▄ ▓▓▓ ▓▓▌
|
|
▄▓▓▓▀' ▄▓▓▀ ▓▓▓ ▄▄ ▄▄ ,▄▄ ▄▄▄▄ ,▄▄ ▄▓▓▌▄ ▄▄▄ ,▄▄
|
|
▄▓▓▓▀ ▄▓▓▀ ▐▓▓▌ ▓▓▌ ▐▓▓ ▐▓▓▓▀▀▀▓▓▌ ▓▓▓ ▀▓▓▌▀ ^▓▓▌ ╒▓▓▌
|
|
▄▓▓▓▓▓▄▄▄▄▄▄▄▄▓▓▓ ▓▀ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▄ ▓▓▌
|
|
▀▓▓▓▓▀▀▀▀▀▀▀▀▀▀▓▓▄ ▓▓ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▐▓▓
|
|
^█▓▓▓ ▀▓▓▄ ▐▓▓▌ ▓▓▓▓▄▓▓▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▓▄ ▓▓▓▓`
|
|
'▀▓▓▓▄ ^▓▓▓ ▓▓▓ └▀▀▀▀ ▀▀ ^▀▀ `▀▀ `▀▀ '▀▀ ▐▓▓▌
|
|
▀▀▀▀▓▄▄▄ ▓▓▓▓▓▓, ▓▓▓▓▀
|
|
`▀█▓▓▓▓▓▓▓▓▓▌
|
|
¬`▀▀▀█▓
|
|
|
|
"""
|
|
)
|
|
except Exception:
|
|
print("\n\n\tUnity Technologies\n")
|
|
|
|
_USAGE = """
|
|
Usage:
|
|
mlagents-learn <trainer-config-path> [options]
|
|
mlagents-learn --help
|
|
|
|
Options:
|
|
--env=<file> Name of the Unity executable [default: None].
|
|
--curriculum=<directory> Curriculum json directory for environment [default: None].
|
|
--sampler=<file> Reset parameter yaml file for environment [default: None].
|
|
--keep-checkpoints=<n> How many model checkpoints to keep [default: 5].
|
|
--lesson=<n> Start learning from this lesson [default: 0].
|
|
--load Whether to load the model or randomly initialize [default: False].
|
|
--run-id=<path> The directory name for model and summary statistics [default: ppo].
|
|
--num-runs=<n> Number of concurrent training sessions [default: 1].
|
|
--save-freq=<n> Frequency at which to save model [default: 50000].
|
|
--seed=<n> Random seed used for training [default: -1].
|
|
--slow Whether to run the game at training speed [default: False].
|
|
--train Whether to train model, or only run inference [default: False].
|
|
--base-port=<n> Base port for environment communication [default: 5005].
|
|
--num-envs=<n> Number of parallel environments to use for training [default: 1]
|
|
--docker-target-name=<dt> Docker volume to store training-specific files [default: None].
|
|
--no-graphics Whether to run the environment in no-graphics mode [default: False].
|
|
--debug Whether to run ML-Agents in debug mode with detailed logging [default: False].
|
|
--multi-gpu Whether to use multiple GPU training [default: False].
|
|
"""
|
|
|
|
options = docopt(_USAGE)
|
|
trainer_logger = logging.getLogger("mlagents.trainers")
|
|
env_logger = logging.getLogger("mlagents.envs")
|
|
trainer_logger.info(options)
|
|
if options["--debug"]:
|
|
trainer_logger.setLevel("DEBUG")
|
|
env_logger.setLevel("DEBUG")
|
|
num_runs = int(options["--num-runs"])
|
|
seed = int(options["--seed"])
|
|
|
|
if options["--env"] == "None" and num_runs > 1:
|
|
raise TrainerError(
|
|
"It is not possible to launch more than one concurrent training session "
|
|
"when training from the editor."
|
|
)
|
|
|
|
jobs = []
|
|
run_seed = seed
|
|
|
|
if num_runs == 1:
|
|
if seed == -1:
|
|
run_seed = np.random.randint(0, 10000)
|
|
run_training(0, run_seed, options, Queue())
|
|
else:
|
|
for i in range(num_runs):
|
|
if seed == -1:
|
|
run_seed = np.random.randint(0, 10000)
|
|
process_queue = Queue()
|
|
p = Process(target=run_training, args=(i, run_seed, options, process_queue))
|
|
jobs.append(p)
|
|
p.start()
|
|
# Wait for signal that environment has successfully launched
|
|
while process_queue.get() is not True:
|
|
continue
|
|
|
|
# Wait for jobs to complete. Otherwise we'll have an extra
|
|
# unhandled KeyboardInterrupt if we end early.
|
|
try:
|
|
for job in jobs:
|
|
job.join()
|
|
except KeyboardInterrupt:
|
|
pass
|
|
|
|
|
|
# For python debugger to directly run this script
|
|
if __name__ == "__main__":
|
|
main()
|