您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
85 行
2.4 KiB
85 行
2.4 KiB
from mlagents.torch_utils import torch
|
|
|
|
from mlagents.trainers.torch.layers import (
|
|
Swish,
|
|
linear_layer,
|
|
lstm_layer,
|
|
Initialization,
|
|
LSTM,
|
|
LayerNorm,
|
|
)
|
|
|
|
|
|
def test_swish():
|
|
layer = Swish()
|
|
input_tensor = torch.Tensor([[1, 2, 3], [4, 5, 6]])
|
|
target_tensor = torch.mul(input_tensor, torch.sigmoid(input_tensor))
|
|
assert torch.all(torch.eq(layer(input_tensor), target_tensor))
|
|
|
|
|
|
def test_initialization_layer():
|
|
torch.manual_seed(0)
|
|
# Test Zero
|
|
layer = linear_layer(
|
|
3, 4, kernel_init=Initialization.Zero, bias_init=Initialization.Zero
|
|
)
|
|
assert torch.all(torch.eq(layer.weight.data, torch.zeros_like(layer.weight.data)))
|
|
assert torch.all(torch.eq(layer.bias.data, torch.zeros_like(layer.bias.data)))
|
|
|
|
|
|
def test_lstm_layer():
|
|
torch.manual_seed(0)
|
|
# Test zero for LSTM
|
|
layer = lstm_layer(
|
|
4, 4, kernel_init=Initialization.Zero, bias_init=Initialization.Zero
|
|
)
|
|
for name, param in layer.named_parameters():
|
|
if "weight" in name:
|
|
assert torch.all(torch.eq(param.data, torch.zeros_like(param.data)))
|
|
elif "bias" in name:
|
|
assert torch.all(
|
|
torch.eq(param.data[4:8], torch.ones_like(param.data[4:8]))
|
|
)
|
|
|
|
|
|
def test_lstm_class():
|
|
torch.manual_seed(0)
|
|
input_size = 12
|
|
memory_size = 64
|
|
batch_size = 8
|
|
seq_len = 16
|
|
lstm = LSTM(input_size, memory_size)
|
|
|
|
assert lstm.memory_size == memory_size
|
|
|
|
sample_input = torch.ones((batch_size, seq_len, input_size))
|
|
sample_memories = torch.ones((1, batch_size, memory_size))
|
|
out, mem = lstm(sample_input, sample_memories)
|
|
# Hidden size should be half of memory_size
|
|
assert out.shape == (batch_size, seq_len, memory_size // 2)
|
|
assert mem.shape == (1, batch_size, memory_size)
|
|
|
|
|
|
def test_layer_norm():
|
|
torch.manual_seed(0)
|
|
torch_ln = torch.nn.LayerNorm(10, elementwise_affine=False)
|
|
cust_ln = LayerNorm()
|
|
|
|
sample_input = torch.rand(10)
|
|
assert torch.all(
|
|
torch.isclose(
|
|
torch_ln(sample_input), cust_ln(sample_input), atol=1e-5, rtol=0.0
|
|
)
|
|
)
|
|
sample_input = torch.rand((4, 10))
|
|
assert torch.all(
|
|
torch.isclose(
|
|
torch_ln(sample_input), cust_ln(sample_input), atol=1e-5, rtol=0.0
|
|
)
|
|
)
|
|
sample_input = torch.rand((7, 6, 10))
|
|
assert torch.all(
|
|
torch.isclose(
|
|
torch_ln(sample_input), cust_ln(sample_input), atol=1e-5, rtol=0.0
|
|
)
|
|
)
|