您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
248 行
8.7 KiB
248 行
8.7 KiB
using System;
|
|
using System.Collections.Generic;
|
|
using Unity.Barracuda;
|
|
using UnityEngine.Profiling;
|
|
using Unity.MLAgents.Actuators;
|
|
using Unity.MLAgents.Policies;
|
|
using Unity.MLAgents.Sensors;
|
|
|
|
namespace Unity.MLAgents.Inference
|
|
{
|
|
internal struct AgentInfoSensorsPair
|
|
{
|
|
public AgentInfo agentInfo;
|
|
public List<ISensor> sensors;
|
|
}
|
|
|
|
internal class ModelRunner
|
|
{
|
|
List<AgentInfoSensorsPair> m_Infos = new List<AgentInfoSensorsPair>();
|
|
Dictionary<int, ActionBuffers> m_LastActionsReceived = new Dictionary<int, ActionBuffers>();
|
|
List<int> m_OrderedAgentsRequestingDecisions = new List<int>();
|
|
|
|
ITensorAllocator m_TensorAllocator;
|
|
TensorGenerator m_TensorGenerator;
|
|
TensorApplier m_TensorApplier;
|
|
|
|
NNModel m_Model;
|
|
string m_ModelName;
|
|
InferenceDevice m_InferenceDevice;
|
|
IWorker m_Engine;
|
|
bool m_Verbose = false;
|
|
string[] m_OutputNames;
|
|
IReadOnlyList<TensorProxy> m_InferenceInputs;
|
|
List<TensorProxy> m_InferenceOutputs;
|
|
Dictionary<string, Tensor> m_InputsByName;
|
|
Dictionary<int, List<float>> m_Memories = new Dictionary<int, List<float>>();
|
|
|
|
SensorShapeValidator m_SensorShapeValidator = new SensorShapeValidator();
|
|
|
|
bool m_ObservationsInitialized;
|
|
|
|
/// <summary>
|
|
/// Initializes the Brain with the Model that it will use when selecting actions for
|
|
/// the agents
|
|
/// </summary>
|
|
/// <param name="model"> The Barracuda model to load </param>
|
|
/// <param name="actionSpec"> Description of the actions for the Agent.</param>
|
|
/// <param name="inferenceDevice"> Inference execution device. CPU is the fastest
|
|
/// option for most of ML Agents models. </param>
|
|
/// <param name="seed"> The seed that will be used to initialize the RandomNormal
|
|
/// and Multinomial objects used when running inference.</param>
|
|
/// <exception cref="UnityAgentsException">Throws an error when the model is null
|
|
/// </exception>
|
|
public ModelRunner(
|
|
NNModel model,
|
|
ActionSpec actionSpec,
|
|
InferenceDevice inferenceDevice,
|
|
int seed = 0)
|
|
{
|
|
Model barracudaModel;
|
|
m_Model = model;
|
|
m_ModelName = model.name;
|
|
m_InferenceDevice = inferenceDevice;
|
|
m_TensorAllocator = new TensorCachingAllocator();
|
|
if (model != null)
|
|
{
|
|
#if BARRACUDA_VERBOSE
|
|
m_Verbose = true;
|
|
#endif
|
|
|
|
D.logEnabled = m_Verbose;
|
|
|
|
barracudaModel = ModelLoader.Load(model);
|
|
|
|
var failedCheck = BarracudaModelParamLoader.CheckModelVersion(
|
|
barracudaModel
|
|
);
|
|
if (failedCheck != null)
|
|
{
|
|
if (failedCheck.CheckType == BarracudaModelParamLoader.FailedCheck.CheckTypeEnum.Error)
|
|
{
|
|
throw new UnityAgentsException(failedCheck.Message);
|
|
}
|
|
}
|
|
|
|
WorkerFactory.Type executionDevice;
|
|
switch (inferenceDevice)
|
|
{
|
|
case InferenceDevice.CPU:
|
|
executionDevice = WorkerFactory.Type.CSharp;
|
|
break;
|
|
case InferenceDevice.GPU:
|
|
executionDevice = WorkerFactory.Type.ComputePrecompiled;
|
|
break;
|
|
case InferenceDevice.Burst:
|
|
executionDevice = WorkerFactory.Type.CSharpBurst;
|
|
break;
|
|
case InferenceDevice.Default: // fallthrough
|
|
default:
|
|
executionDevice = WorkerFactory.Type.CSharpBurst;
|
|
break;
|
|
}
|
|
m_Engine = WorkerFactory.CreateWorker(executionDevice, barracudaModel, m_Verbose);
|
|
}
|
|
else
|
|
{
|
|
barracudaModel = null;
|
|
m_Engine = null;
|
|
}
|
|
|
|
m_InferenceInputs = barracudaModel.GetInputTensors();
|
|
m_OutputNames = barracudaModel.GetOutputNames();
|
|
m_TensorGenerator = new TensorGenerator(
|
|
seed, m_TensorAllocator, m_Memories, barracudaModel);
|
|
m_TensorApplier = new TensorApplier(
|
|
actionSpec, seed, m_TensorAllocator, m_Memories, barracudaModel);
|
|
m_InputsByName = new Dictionary<string, Tensor>();
|
|
m_InferenceOutputs = new List<TensorProxy>();
|
|
}
|
|
|
|
public InferenceDevice InferenceDevice
|
|
{
|
|
get { return m_InferenceDevice; }
|
|
}
|
|
|
|
public NNModel Model
|
|
{
|
|
get { return m_Model; }
|
|
}
|
|
|
|
void PrepareBarracudaInputs(IReadOnlyList<TensorProxy> infInputs)
|
|
{
|
|
m_InputsByName.Clear();
|
|
for (var i = 0; i < infInputs.Count; i++)
|
|
{
|
|
var inp = infInputs[i];
|
|
m_InputsByName[inp.name] = inp.data;
|
|
}
|
|
}
|
|
|
|
public void Dispose()
|
|
{
|
|
if (m_Engine != null)
|
|
m_Engine.Dispose();
|
|
m_TensorAllocator?.Reset(false);
|
|
}
|
|
|
|
void FetchBarracudaOutputs(string[] names)
|
|
{
|
|
m_InferenceOutputs.Clear();
|
|
foreach (var n in names)
|
|
{
|
|
var output = m_Engine.PeekOutput(n);
|
|
m_InferenceOutputs.Add(TensorUtils.TensorProxyFromBarracuda(output, n));
|
|
}
|
|
}
|
|
|
|
public void PutObservations(AgentInfo info, List<ISensor> sensors)
|
|
{
|
|
#if DEBUG
|
|
m_SensorShapeValidator.ValidateSensors(sensors);
|
|
#endif
|
|
m_Infos.Add(new AgentInfoSensorsPair
|
|
{
|
|
agentInfo = info,
|
|
sensors = sensors
|
|
});
|
|
|
|
// We add the episodeId to this list to maintain the order in which the decisions were requested
|
|
m_OrderedAgentsRequestingDecisions.Add(info.episodeId);
|
|
|
|
if (!m_LastActionsReceived.ContainsKey(info.episodeId))
|
|
{
|
|
m_LastActionsReceived[info.episodeId] = ActionBuffers.Empty;
|
|
}
|
|
if (info.done)
|
|
{
|
|
// If the agent is done, we remove the key from the last action dictionary since no action
|
|
// should be taken.
|
|
m_LastActionsReceived.Remove(info.episodeId);
|
|
}
|
|
}
|
|
|
|
public void DecideBatch()
|
|
{
|
|
var currentBatchSize = m_Infos.Count;
|
|
if (currentBatchSize == 0)
|
|
{
|
|
return;
|
|
}
|
|
if (!m_ObservationsInitialized)
|
|
{
|
|
// Just grab the first agent in the collection (any will suffice, really).
|
|
// We check for an empty Collection above, so this will always return successfully.
|
|
var firstInfo = m_Infos[0];
|
|
m_TensorGenerator.InitializeObservations(firstInfo.sensors, m_TensorAllocator);
|
|
m_ObservationsInitialized = true;
|
|
}
|
|
|
|
Profiler.BeginSample("ModelRunner.DecideAction");
|
|
Profiler.BeginSample(m_ModelName);
|
|
|
|
Profiler.BeginSample($"GenerateTensors");
|
|
// Prepare the input tensors to be feed into the engine
|
|
m_TensorGenerator.GenerateTensors(m_InferenceInputs, currentBatchSize, m_Infos);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.BeginSample($"PrepareBarracudaInputs");
|
|
PrepareBarracudaInputs(m_InferenceInputs);
|
|
Profiler.EndSample();
|
|
|
|
// Execute the Model
|
|
Profiler.BeginSample($"ExecuteGraph");
|
|
m_Engine.Execute(m_InputsByName);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.BeginSample($"FetchBarracudaOutputs");
|
|
FetchBarracudaOutputs(m_OutputNames);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.BeginSample($"ApplyTensors");
|
|
// Update the outputs
|
|
m_TensorApplier.ApplyTensors(m_InferenceOutputs, m_OrderedAgentsRequestingDecisions, m_LastActionsReceived);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.EndSample(); // end name
|
|
Profiler.EndSample(); // end ModelRunner.DecideAction
|
|
|
|
m_Infos.Clear();
|
|
|
|
m_OrderedAgentsRequestingDecisions.Clear();
|
|
}
|
|
|
|
public bool HasModel(NNModel other, InferenceDevice otherInferenceDevice)
|
|
{
|
|
return m_Model == other && m_InferenceDevice == otherInferenceDevice;
|
|
}
|
|
|
|
public ActionBuffers GetAction(int agentId)
|
|
{
|
|
if (m_LastActionsReceived.ContainsKey(agentId))
|
|
{
|
|
return m_LastActionsReceived[agentId];
|
|
}
|
|
return ActionBuffers.Empty;
|
|
}
|
|
}
|
|
}
|