Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

422 行
15 KiB

import pytest
from unittest import mock
import yaml
import numpy as np
from mlagents.tf_utils import tf
from mlagents.trainers.sac.models import SACModel
from mlagents.trainers.sac.policy import SACPolicy
from mlagents.trainers.sac.trainer import SACTrainer
from mlagents.trainers.agent_processor import AgentManagerQueue
from mlagents.trainers.buffer import AgentBuffer
from mlagents.trainers.tests import mock_brain as mb
from mlagents.trainers.tests.mock_brain import make_brain_parameters
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory
@pytest.fixture
def dummy_config():
return yaml.safe_load(
"""
trainer: sac
batch_size: 32
buffer_size: 10240
buffer_init_steps: 0
hidden_units: 32
init_entcoef: 0.1
learning_rate: 3.0e-4
max_steps: 1024
memory_size: 8
normalize: false
num_update: 1
train_interval: 1
num_layers: 1
time_horizon: 64
sequence_length: 16
summary_freq: 1000
tau: 0.005
use_recurrent: false
curiosity_enc_size: 128
demo_path: None
vis_encode_type: simple
reward_signals:
extrinsic:
strength: 1.0
gamma: 0.99
"""
)
VECTOR_ACTION_SPACE = [2]
VECTOR_OBS_SPACE = 8
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
BUFFER_INIT_SAMPLES = 32
NUM_AGENTS = 12
def create_sac_policy_mock(dummy_config, use_rnn, use_discrete, use_visual):
mock_brain = mb.setup_mock_brain(
use_discrete,
use_visual,
vector_action_space=VECTOR_ACTION_SPACE,
vector_obs_space=VECTOR_OBS_SPACE,
discrete_action_space=DISCRETE_ACTION_SPACE,
)
trainer_parameters = dummy_config
model_path = "testmodel"
trainer_parameters["model_path"] = model_path
trainer_parameters["keep_checkpoints"] = 3
trainer_parameters["use_recurrent"] = use_rnn
policy = SACPolicy(0, mock_brain, trainer_parameters, False, False)
return policy
def test_sac_cc_policy(dummy_config):
# Test evaluate
tf.reset_default_graph()
policy = create_sac_policy_mock(
dummy_config, use_rnn=False, use_discrete=False, use_visual=False
)
step = mb.create_batchedstep_from_brainparams(policy.brain, num_agents=NUM_AGENTS)
run_out = policy.evaluate(step, list(step.agent_id))
assert run_out["action"].shape == (NUM_AGENTS, VECTOR_ACTION_SPACE[0])
# Test update
update_buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, policy.brain)
# Mock out reward signal eval
update_buffer["extrinsic_rewards"] = update_buffer["environment_rewards"]
policy.update(update_buffer, num_sequences=update_buffer.num_experiences)
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
def test_sac_update_reward_signals(dummy_config, discrete):
# Test evaluate
tf.reset_default_graph()
# Add a Curiosity module
dummy_config["reward_signals"]["curiosity"] = {}
dummy_config["reward_signals"]["curiosity"]["strength"] = 1.0
dummy_config["reward_signals"]["curiosity"]["gamma"] = 0.99
dummy_config["reward_signals"]["curiosity"]["encoding_size"] = 128
policy = create_sac_policy_mock(
dummy_config, use_rnn=False, use_discrete=discrete, use_visual=False
)
# Test update, while removing PPO-specific buffer elements.
update_buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, policy.brain)
# Mock out reward signal eval
update_buffer["extrinsic_rewards"] = update_buffer["environment_rewards"]
update_buffer["curiosity_rewards"] = update_buffer["environment_rewards"]
policy.update_reward_signals(
{"curiosity": update_buffer}, num_sequences=update_buffer.num_experiences
)
def test_sac_dc_policy(dummy_config):
# Test evaluate
tf.reset_default_graph()
policy = create_sac_policy_mock(
dummy_config, use_rnn=False, use_discrete=True, use_visual=False
)
step = mb.create_batchedstep_from_brainparams(policy.brain, num_agents=NUM_AGENTS)
run_out = policy.evaluate(step, list(step.agent_id))
assert run_out["action"].shape == (NUM_AGENTS, len(DISCRETE_ACTION_SPACE))
# Test update
update_buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, policy.brain)
# Mock out reward signal eval
update_buffer["extrinsic_rewards"] = update_buffer["environment_rewards"]
policy.update(update_buffer, num_sequences=update_buffer.num_experiences)
def test_sac_visual_policy(dummy_config):
# Test evaluate
tf.reset_default_graph()
policy = create_sac_policy_mock(
dummy_config, use_rnn=False, use_discrete=True, use_visual=True
)
step = mb.create_batchedstep_from_brainparams(policy.brain, num_agents=NUM_AGENTS)
run_out = policy.evaluate(step, list(step.agent_id))
assert run_out["action"].shape == (NUM_AGENTS, len(DISCRETE_ACTION_SPACE))
# Test update
update_buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, policy.brain)
# Mock out reward signal eval
update_buffer["extrinsic_rewards"] = update_buffer["environment_rewards"]
run_out = policy.update(update_buffer, num_sequences=update_buffer.num_experiences)
assert type(run_out) is dict
def test_sac_rnn_policy(dummy_config):
# Test evaluate
tf.reset_default_graph()
policy = create_sac_policy_mock(
dummy_config, use_rnn=True, use_discrete=True, use_visual=False
)
step = mb.create_batchedstep_from_brainparams(policy.brain, num_agents=NUM_AGENTS)
run_out = policy.evaluate(step, list(step.agent_id))
assert run_out["action"].shape == (NUM_AGENTS, len(DISCRETE_ACTION_SPACE))
# Test update
buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, policy.brain, memory_size=8)
# Mock out reward signal eval
buffer["extrinsic_rewards"] = buffer["environment_rewards"]
update_buffer = AgentBuffer()
buffer.resequence_and_append(update_buffer, training_length=policy.sequence_length)
run_out = policy.update(
update_buffer,
num_sequences=update_buffer.num_experiences // policy.sequence_length,
)
def test_sac_model_cc_vector():
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
model = SACModel(
make_brain_parameters(discrete_action=False, visual_inputs=0)
)
init = tf.global_variables_initializer()
sess.run(init)
run_list = [model.output, model.value, model.entropy, model.learning_rate]
feed_dict = {
model.batch_size: 2,
model.sequence_length: 1,
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
}
sess.run(run_list, feed_dict=feed_dict)
def test_sac_model_cc_visual():
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
model = SACModel(
make_brain_parameters(discrete_action=False, visual_inputs=2)
)
init = tf.global_variables_initializer()
sess.run(init)
run_list = [model.output, model.value, model.entropy, model.learning_rate]
feed_dict = {
model.batch_size: 2,
model.sequence_length: 1,
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
model.visual_in[0]: np.ones([2, 40, 30, 3], dtype=np.float32),
model.visual_in[1]: np.ones([2, 40, 30, 3], dtype=np.float32),
}
sess.run(run_list, feed_dict=feed_dict)
def test_sac_model_dc_visual():
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
model = SACModel(
make_brain_parameters(discrete_action=True, visual_inputs=2)
)
init = tf.global_variables_initializer()
sess.run(init)
run_list = [model.output, model.value, model.entropy, model.learning_rate]
feed_dict = {
model.batch_size: 2,
model.sequence_length: 1,
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
model.visual_in[0]: np.ones([2, 40, 30, 3], dtype=np.float32),
model.visual_in[1]: np.ones([2, 40, 30, 3], dtype=np.float32),
model.action_masks: np.ones([2, 2], dtype=np.float32),
}
sess.run(run_list, feed_dict=feed_dict)
def test_sac_model_dc_vector():
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
model = SACModel(
make_brain_parameters(discrete_action=True, visual_inputs=0)
)
init = tf.global_variables_initializer()
sess.run(init)
run_list = [model.output, model.value, model.entropy, model.learning_rate]
feed_dict = {
model.batch_size: 2,
model.sequence_length: 1,
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
model.action_masks: np.ones([2, 2], dtype=np.float32),
}
sess.run(run_list, feed_dict=feed_dict)
def test_sac_model_dc_vector_rnn():
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
memory_size = 128
model = SACModel(
make_brain_parameters(discrete_action=True, visual_inputs=0),
use_recurrent=True,
m_size=memory_size,
)
init = tf.global_variables_initializer()
sess.run(init)
run_list = [
model.output,
model.all_log_probs,
model.value,
model.entropy,
model.learning_rate,
model.memory_out,
]
feed_dict = {
model.batch_size: 1,
model.sequence_length: 2,
model.prev_action: [[0], [0]],
model.memory_in: np.zeros((1, memory_size), dtype=np.float32),
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
model.action_masks: np.ones([1, 2], dtype=np.float32),
}
sess.run(run_list, feed_dict=feed_dict)
def test_sac_model_cc_vector_rnn():
tf.reset_default_graph()
with tf.Session() as sess:
with tf.variable_scope("FakeGraphScope"):
memory_size = 128
model = SACModel(
make_brain_parameters(discrete_action=False, visual_inputs=0),
use_recurrent=True,
m_size=memory_size,
)
init = tf.global_variables_initializer()
sess.run(init)
run_list = [
model.output,
model.all_log_probs,
model.value,
model.entropy,
model.learning_rate,
model.memory_out,
]
feed_dict = {
model.batch_size: 1,
model.sequence_length: 2,
model.memory_in: np.zeros((1, memory_size), dtype=np.float32),
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
}
sess.run(run_list, feed_dict=feed_dict)
def test_sac_save_load_buffer(tmpdir, dummy_config):
mock_brain = mb.setup_mock_brain(
False,
False,
vector_action_space=VECTOR_ACTION_SPACE,
vector_obs_space=VECTOR_OBS_SPACE,
discrete_action_space=DISCRETE_ACTION_SPACE,
)
trainer_params = dummy_config
trainer_params["summary_path"] = str(tmpdir)
trainer_params["model_path"] = str(tmpdir)
trainer_params["save_replay_buffer"] = True
trainer = SACTrainer(mock_brain.brain_name, 1, trainer_params, True, False, 0, 0)
policy = trainer.create_policy(mock_brain)
trainer.add_policy(mock_brain.brain_name, policy)
trainer.update_buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, policy.brain)
buffer_len = trainer.update_buffer.num_experiences
trainer.save_model(mock_brain.brain_name)
# Wipe Trainer and try to load
trainer2 = SACTrainer(mock_brain.brain_name, 1, trainer_params, True, True, 0, 0)
policy = trainer2.create_policy(mock_brain)
trainer2.add_policy(mock_brain.brain_name, policy)
assert trainer2.update_buffer.num_experiences == buffer_len
def test_add_get_policy(dummy_config):
brain_params = make_brain_parameters(
discrete_action=False, visual_inputs=0, vec_obs_size=6
)
dummy_config["summary_path"] = "./summaries/test_trainer_summary"
dummy_config["model_path"] = "./models/test_trainer_models/TestModel"
trainer = SACTrainer(brain_params, 0, dummy_config, True, False, 0, "0")
policy = mock.Mock(spec=SACPolicy)
policy.get_current_step.return_value = 2000
trainer.add_policy(brain_params.brain_name, policy)
assert trainer.get_policy(brain_params.brain_name) == policy
# Make sure the summary steps were loaded properly
assert trainer.get_step == 2000
assert trainer.next_summary_step > 2000
# Test incorrect class of policy
policy = mock.Mock()
with pytest.raises(RuntimeError):
trainer.add_policy(brain_params, policy)
def test_process_trajectory(dummy_config):
brain_params = make_brain_parameters(
discrete_action=False, visual_inputs=0, vec_obs_size=6
)
dummy_config["summary_path"] = "./summaries/test_trainer_summary"
dummy_config["model_path"] = "./models/test_trainer_models/TestModel"
trainer = SACTrainer(brain_params, 0, dummy_config, True, False, 0, "0")
policy = trainer.create_policy(brain_params)
trainer.add_policy(brain_params.brain_name, policy)
trajectory_queue = AgentManagerQueue("testbrain")
trainer.subscribe_trajectory_queue(trajectory_queue)
trajectory = make_fake_trajectory(
length=15,
max_step_complete=True,
vec_obs_size=6,
num_vis_obs=0,
action_space=[2],
)
trajectory_queue.put(trajectory)
trainer.advance()
# Check that trainer put trajectory in update buffer
assert trainer.update_buffer.num_experiences == 15
# Check that the stats are being collected as episode isn't complete
for reward in trainer.collected_rewards.values():
for agent in reward.values():
assert agent > 0
# Add a terminal trajectory
trajectory = make_fake_trajectory(
length=15,
max_step_complete=False,
vec_obs_size=6,
num_vis_obs=0,
action_space=[2],
)
trajectory_queue.put(trajectory)
trainer.advance()
# Check that the stats are reset as episode is finished
for reward in trainer.collected_rewards.values():
for agent in reward.values():
assert agent == 0
assert trainer.stats_reporter.get_stats_summaries("Policy/Extrinsic Reward").num > 0
if __name__ == "__main__":
pytest.main()