Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

226 行
6.7 KiB

import pytest
import yaml
import os
import mlagents.trainers.tests.mock_brain as mb
from mlagents.trainers.ppo.policy import PPOPolicy
from mlagents.trainers.sac.policy import SACPolicy
def ppo_dummy_config():
return yaml.safe_load(
"""
trainer: ppo
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
reward_signals:
extrinsic:
strength: 1.0
gamma: 0.99
"""
)
def sac_dummy_config():
return yaml.safe_load(
"""
trainer: sac
batch_size: 128
buffer_size: 50000
buffer_init_steps: 0
hidden_units: 128
init_entcoef: 1.0
learning_rate: 3.0e-4
max_steps: 5.0e4
memory_size: 256
normalize: false
num_update: 1
train_interval: 1
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
tau: 0.005
use_recurrent: false
vis_encode_type: simple
behavioral_cloning:
demo_path: ./Project/Assets/ML-Agents/Examples/Pyramids/Demos/ExpertPyramid.demo
strength: 1.0
steps: 10000000
reward_signals:
extrinsic:
strength: 1.0
gamma: 0.99
"""
)
@pytest.fixture
def gail_dummy_config():
return {
"gail": {
"strength": 0.1,
"gamma": 0.9,
"encoding_size": 128,
"use_vail": True,
"demo_path": os.path.dirname(os.path.abspath(__file__)) + "/test.demo",
}
}
@pytest.fixture
def curiosity_dummy_config():
return {"curiosity": {"strength": 0.1, "gamma": 0.9, "encoding_size": 128}}
VECTOR_ACTION_SPACE = [2]
VECTOR_OBS_SPACE = 8
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
BUFFER_INIT_SAMPLES = 20
BATCH_SIZE = 12
NUM_AGENTS = 12
def create_policy_mock(
trainer_config, reward_signal_config, use_rnn, use_discrete, use_visual
):
mock_brain = mb.setup_mock_brain(
use_discrete,
use_visual,
vector_action_space=VECTOR_ACTION_SPACE,
vector_obs_space=VECTOR_OBS_SPACE,
discrete_action_space=DISCRETE_ACTION_SPACE,
)
trainer_parameters = trainer_config
model_path = "testpath"
trainer_parameters["model_path"] = model_path
trainer_parameters["keep_checkpoints"] = 3
trainer_parameters["reward_signals"].update(reward_signal_config)
trainer_parameters["use_recurrent"] = use_rnn
if trainer_config["trainer"] == "ppo":
policy = PPOPolicy(0, mock_brain, trainer_parameters, False, False)
else:
policy = SACPolicy(0, mock_brain, trainer_parameters, False, False)
return policy
def reward_signal_eval(policy, reward_signal_name):
buffer = mb.simulate_rollout(BATCH_SIZE, policy.brain)
# Test evaluate
rsig_result = policy.reward_signals[reward_signal_name].evaluate_batch(buffer)
assert rsig_result.scaled_reward.shape == (BATCH_SIZE,)
assert rsig_result.unscaled_reward.shape == (BATCH_SIZE,)
def reward_signal_update(policy, reward_signal_name):
buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, policy.brain)
feed_dict = policy.reward_signals[reward_signal_name].prepare_update(
policy.model, buffer.make_mini_batch(0, 10), 2
)
out = policy._execute_model(
feed_dict, policy.reward_signals[reward_signal_name].update_dict
)
assert type(out) is dict
@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
def test_gail_cc(trainer_config, gail_dummy_config):
policy = create_policy_mock(trainer_config, gail_dummy_config, False, False, False)
reward_signal_eval(policy, "gail")
reward_signal_update(policy, "gail")
@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
def test_gail_dc_visual(trainer_config, gail_dummy_config):
gail_dummy_config["gail"]["demo_path"] = (
os.path.dirname(os.path.abspath(__file__)) + "/testdcvis.demo"
)
policy = create_policy_mock(trainer_config, gail_dummy_config, False, True, True)
reward_signal_eval(policy, "gail")
reward_signal_update(policy, "gail")
@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
def test_gail_rnn(trainer_config, gail_dummy_config):
policy = create_policy_mock(trainer_config, gail_dummy_config, True, False, False)
reward_signal_eval(policy, "gail")
reward_signal_update(policy, "gail")
@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
def test_curiosity_cc(trainer_config, curiosity_dummy_config):
policy = create_policy_mock(
trainer_config, curiosity_dummy_config, False, False, False
)
reward_signal_eval(policy, "curiosity")
reward_signal_update(policy, "curiosity")
@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
def test_curiosity_dc(trainer_config, curiosity_dummy_config):
policy = create_policy_mock(
trainer_config, curiosity_dummy_config, False, True, False
)
reward_signal_eval(policy, "curiosity")
reward_signal_update(policy, "curiosity")
@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
def test_curiosity_visual(trainer_config, curiosity_dummy_config):
policy = create_policy_mock(
trainer_config, curiosity_dummy_config, False, False, True
)
reward_signal_eval(policy, "curiosity")
reward_signal_update(policy, "curiosity")
@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
def test_curiosity_rnn(trainer_config, curiosity_dummy_config):
policy = create_policy_mock(
trainer_config, curiosity_dummy_config, True, False, False
)
reward_signal_eval(policy, "curiosity")
reward_signal_update(policy, "curiosity")
@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
def test_extrinsic(trainer_config, curiosity_dummy_config):
policy = create_policy_mock(
trainer_config, curiosity_dummy_config, False, False, False
)
reward_signal_eval(policy, "extrinsic")
reward_signal_update(policy, "extrinsic")
if __name__ == "__main__":
pytest.main()