您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
115 行
3.5 KiB
115 行
3.5 KiB
from unittest import mock
|
|
import pytest
|
|
import mlagents.trainers.tests.mock_brain as mb
|
|
import numpy as np
|
|
from mlagents.trainers.agent_processor import (
|
|
AgentProcessor,
|
|
AgentManager,
|
|
AgentManagerQueue,
|
|
)
|
|
from mlagents.trainers.action_info import ActionInfo
|
|
from mlagents.trainers.trajectory import Trajectory
|
|
from mlagents.trainers.stats import StatsReporter
|
|
|
|
|
|
def create_mock_brain():
|
|
mock_brain = mb.create_mock_brainparams(
|
|
vector_action_space_type="continuous",
|
|
vector_action_space_size=[2],
|
|
vector_observation_space_size=8,
|
|
number_visual_observations=1,
|
|
)
|
|
return mock_brain
|
|
|
|
|
|
def create_mock_policy():
|
|
mock_policy = mock.Mock()
|
|
mock_policy.reward_signals = {}
|
|
mock_policy.retrieve_memories.return_value = np.zeros((1, 1), dtype=np.float32)
|
|
mock_policy.retrieve_previous_action.return_value = np.zeros(
|
|
(1, 1), dtype=np.float32
|
|
)
|
|
return mock_policy
|
|
|
|
|
|
@pytest.mark.parametrize("num_vis_obs", [0, 1, 2], ids=["vec", "1 viz", "2 viz"])
|
|
def test_agentprocessor(num_vis_obs):
|
|
policy = create_mock_policy()
|
|
tqueue = mock.Mock()
|
|
name_behavior_id = "test_brain_name"
|
|
processor = AgentProcessor(
|
|
policy,
|
|
name_behavior_id,
|
|
max_trajectory_length=5,
|
|
stats_reporter=StatsReporter("testcat"),
|
|
)
|
|
|
|
fake_action_outputs = {
|
|
"action": [0.1, 0.1],
|
|
"entropy": np.array([1.0], dtype=np.float32),
|
|
"learning_rate": 1.0,
|
|
"pre_action": [0.1, 0.1],
|
|
"log_probs": [0.1, 0.1],
|
|
}
|
|
mock_step = mb.create_mock_batchedstep(
|
|
num_agents=2,
|
|
num_vector_observations=8,
|
|
action_shape=[2],
|
|
num_vis_observations=num_vis_obs,
|
|
)
|
|
fake_action_info = ActionInfo(
|
|
action=[0.1, 0.1],
|
|
value=[0.1, 0.1],
|
|
outputs=fake_action_outputs,
|
|
agent_ids=mock_step.agent_id,
|
|
)
|
|
processor.publish_trajectory_queue(tqueue)
|
|
# This is like the initial state after the env reset
|
|
processor.add_experiences(mock_step, 0, ActionInfo.empty())
|
|
for _ in range(5):
|
|
processor.add_experiences(mock_step, 0, fake_action_info)
|
|
|
|
# Assert that two trajectories have been added to the Trainer
|
|
assert len(tqueue.put.call_args_list) == 2
|
|
|
|
# Assert that the trajectory is of length 5
|
|
trajectory = tqueue.put.call_args_list[0][0][0]
|
|
assert len(trajectory.steps) == 5
|
|
|
|
# Assert that the AgentProcessor is empty
|
|
assert len(processor.experience_buffers[0]) == 0
|
|
|
|
# Test empty BatchedStepResult
|
|
mock_step = mb.create_mock_batchedstep(
|
|
num_agents=0,
|
|
num_vector_observations=8,
|
|
action_shape=[2],
|
|
num_vis_observations=num_vis_obs,
|
|
)
|
|
processor.add_experiences(mock_step, 0, ActionInfo([], [], {}, []))
|
|
# Assert that the AgentProcessor is still empty
|
|
assert len(processor.experience_buffers[0]) == 0
|
|
|
|
|
|
def test_agent_manager():
|
|
policy = create_mock_policy()
|
|
name_behavior_id = "test_brain_name"
|
|
manager = AgentManager(
|
|
policy,
|
|
name_behavior_id,
|
|
max_trajectory_length=5,
|
|
stats_reporter=StatsReporter("testcat"),
|
|
)
|
|
assert len(manager.trajectory_queues) == 1
|
|
assert isinstance(manager.trajectory_queues[0], AgentManagerQueue)
|
|
|
|
|
|
def test_agent_manager_queue():
|
|
queue = AgentManagerQueue(behavior_id="testbehavior")
|
|
trajectory = mock.Mock(spec=Trajectory)
|
|
assert queue.empty()
|
|
queue.put(trajectory)
|
|
assert not queue.empty()
|
|
queue_traj = queue.get_nowait()
|
|
assert isinstance(queue_traj, Trajectory)
|
|
assert queue.empty()
|