您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
159 行
6.6 KiB
159 行
6.6 KiB
# # Unity ML-Agents Toolkit
|
|
from typing import Dict, List
|
|
from collections import defaultdict
|
|
import abc
|
|
|
|
from mlagents.trainers.optimizer.tf_optimizer import TFOptimizer
|
|
from mlagents.trainers.buffer import AgentBuffer
|
|
from mlagents.trainers.trainer import Trainer
|
|
from mlagents.trainers.exception import UnityTrainerException
|
|
from mlagents.trainers.components.reward_signals import RewardSignalResult
|
|
from mlagents_envs.timers import hierarchical_timer
|
|
from mlagents.trainers.agent_processor import AgentManagerQueue
|
|
from mlagents.trainers.trajectory import Trajectory
|
|
from mlagents.trainers.stats import StatsPropertyType
|
|
|
|
RewardSignalResults = Dict[str, RewardSignalResult]
|
|
|
|
|
|
class RLTrainer(Trainer): # pylint: disable=abstract-method
|
|
"""
|
|
This class is the base class for trainers that use Reward Signals.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super(RLTrainer, self).__init__(*args, **kwargs)
|
|
# Make sure we have at least one reward_signal
|
|
if not self.trainer_parameters["reward_signals"]:
|
|
raise UnityTrainerException(
|
|
"No reward signals were defined. At least one must be used with {}.".format(
|
|
self.__class__.__name__
|
|
)
|
|
)
|
|
# collected_rewards is a dictionary from name of reward signal to a dictionary of agent_id to cumulative reward
|
|
# used for reporting only. We always want to report the environment reward to Tensorboard, regardless
|
|
# of what reward signals are actually present.
|
|
self.cumulative_returns_since_policy_update: List[float] = []
|
|
self.collected_rewards: Dict[str, Dict[str, int]] = {
|
|
"environment": defaultdict(lambda: 0)
|
|
}
|
|
self.update_buffer: AgentBuffer = AgentBuffer()
|
|
self._stats_reporter.add_property(
|
|
StatsPropertyType.HYPERPARAMETERS, self.trainer_parameters
|
|
)
|
|
|
|
def end_episode(self) -> None:
|
|
"""
|
|
A signal that the Episode has ended. The buffer must be reset.
|
|
Get only called when the academy resets.
|
|
"""
|
|
for rewards in self.collected_rewards.values():
|
|
for agent_id in rewards:
|
|
rewards[agent_id] = 0
|
|
|
|
def _update_end_episode_stats(self, agent_id: str, optimizer: TFOptimizer) -> None:
|
|
for name, rewards in self.collected_rewards.items():
|
|
if name == "environment":
|
|
self.stats_reporter.add_stat(
|
|
"Environment/Cumulative Reward", rewards.get(agent_id, 0)
|
|
)
|
|
self.cumulative_returns_since_policy_update.append(
|
|
rewards.get(agent_id, 0)
|
|
)
|
|
self.reward_buffer.appendleft(rewards.get(agent_id, 0))
|
|
rewards[agent_id] = 0
|
|
else:
|
|
self.stats_reporter.add_stat(
|
|
optimizer.reward_signals[name].stat_name, rewards.get(agent_id, 0)
|
|
)
|
|
rewards[agent_id] = 0
|
|
|
|
def _clear_update_buffer(self) -> None:
|
|
"""
|
|
Clear the buffers that have been built up during inference.
|
|
"""
|
|
self.update_buffer.reset_agent()
|
|
|
|
@abc.abstractmethod
|
|
def _is_ready_update(self):
|
|
"""
|
|
Returns whether or not the trainer has enough elements to run update model
|
|
:return: A boolean corresponding to wether or not update_model() can be run
|
|
"""
|
|
return False
|
|
|
|
@abc.abstractmethod
|
|
def _update_policy(self) -> bool:
|
|
"""
|
|
Uses demonstration_buffer to update model.
|
|
:return: Whether or not the policy was updated.
|
|
"""
|
|
pass
|
|
|
|
def _increment_step(self, n_steps: int, name_behavior_id: str) -> None:
|
|
"""
|
|
Increment the step count of the trainer
|
|
:param n_steps: number of steps to increment the step count by
|
|
"""
|
|
self.step += n_steps
|
|
self.next_summary_step = self._get_next_summary_step()
|
|
p = self.get_policy(name_behavior_id)
|
|
if p:
|
|
p.increment_step(n_steps)
|
|
|
|
def _get_next_summary_step(self) -> int:
|
|
"""
|
|
Get the next step count that should result in a summary write.
|
|
"""
|
|
return self.step + (self.summary_freq - self.step % self.summary_freq)
|
|
|
|
def _write_summary(self, step: int) -> None:
|
|
"""
|
|
Saves training statistics to Tensorboard.
|
|
"""
|
|
self.stats_reporter.add_stat("Is Training", float(self.should_still_train))
|
|
self.stats_reporter.write_stats(int(step))
|
|
|
|
@abc.abstractmethod
|
|
def _process_trajectory(self, trajectory: Trajectory) -> None:
|
|
"""
|
|
Takes a trajectory and processes it, putting it into the update buffer.
|
|
:param trajectory: The Trajectory tuple containing the steps to be processed.
|
|
"""
|
|
self._maybe_write_summary(self.get_step + len(trajectory.steps))
|
|
self._increment_step(len(trajectory.steps), trajectory.behavior_id)
|
|
|
|
def _maybe_write_summary(self, step_after_process: int) -> None:
|
|
"""
|
|
If processing the trajectory will make the step exceed the next summary write,
|
|
write the summary. This logic ensures summaries are written on the update step and not in between.
|
|
:param step_after_process: the step count after processing the next trajectory.
|
|
"""
|
|
if step_after_process >= self.next_summary_step and self.get_step != 0:
|
|
self._write_summary(self.next_summary_step)
|
|
|
|
def advance(self) -> None:
|
|
"""
|
|
Steps the trainer, taking in trajectories and updates if ready.
|
|
Will block and wait briefly if there are no trajectories.
|
|
"""
|
|
with hierarchical_timer("process_trajectory"):
|
|
for traj_queue in self.trajectory_queues:
|
|
# We grab at most the maximum length of the queue.
|
|
# This ensures that even if the queue is being filled faster than it is
|
|
# being emptied, the trajectories in the queue are on-policy.
|
|
for _ in range(traj_queue.qsize()):
|
|
try:
|
|
t = traj_queue.get(block=False)
|
|
self._process_trajectory(t)
|
|
except AgentManagerQueue.Empty:
|
|
break
|
|
if self.should_still_train:
|
|
if self._is_ready_update():
|
|
with hierarchical_timer("_update_policy"):
|
|
if self._update_policy():
|
|
for q in self.policy_queues:
|
|
# Get policies that correspond to the policy queue in question
|
|
q.put(self.get_policy(q.behavior_id))
|
|
else:
|
|
self._clear_update_buffer()
|