Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

123 行
3.6 KiB

import yaml
from unittest import mock
import pytest
import mlagents.trainers.tests.mock_brain as mb
from mlagents.trainers.trainer.rl_trainer import RLTrainer
from mlagents.trainers.tests.test_buffer import construct_fake_buffer
from mlagents.trainers.agent_processor import AgentManagerQueue
def dummy_config():
return yaml.safe_load(
"""
summary_path: "test/"
summary_freq: 1000
max_steps: 100
reward_signals:
extrinsic:
strength: 1.0
gamma: 0.99
"""
)
def create_mock_brain():
mock_brain = mb.create_mock_brainparams(
vector_action_space_type="continuous",
vector_action_space_size=[2],
vector_observation_space_size=8,
number_visual_observations=1,
)
return mock_brain
# Add concrete implementations of abstract methods
class FakeTrainer(RLTrainer):
def set_is_policy_updating(self, is_updating):
self.update_policy = is_updating
def get_policy(self, name_behavior_id):
return mock.Mock()
def _is_ready_update(self):
return True
def _update_policy(self):
return self.update_policy
def add_policy(self):
pass
def create_policy(self):
return mock.Mock()
def _process_trajectory(self, trajectory):
super()._process_trajectory(trajectory)
def create_rl_trainer():
mock_brainparams = create_mock_brain()
trainer = FakeTrainer(mock_brainparams, dummy_config(), True, 0)
trainer.set_is_policy_updating(True)
return trainer
def test_rl_trainer():
trainer = create_rl_trainer()
agent_id = "0"
trainer.collected_rewards["extrinsic"] = {agent_id: 3}
# Test end episode
trainer.end_episode()
for rewards in trainer.collected_rewards.values():
for agent_id in rewards:
assert rewards[agent_id] == 0
def test_clear_update_buffer():
trainer = create_rl_trainer()
trainer.update_buffer = construct_fake_buffer(0)
trainer._clear_update_buffer()
for _, arr in trainer.update_buffer.items():
assert len(arr) == 0
@mock.patch("mlagents.trainers.trainer.rl_trainer.RLTrainer._clear_update_buffer")
def test_advance(mocked_clear_update_buffer):
trainer = create_rl_trainer()
trajectory_queue = AgentManagerQueue("testbrain")
policy_queue = AgentManagerQueue("testbrain")
trainer.subscribe_trajectory_queue(trajectory_queue)
trainer.publish_policy_queue(policy_queue)
time_horizon = 10
trajectory = mb.make_fake_trajectory(
length=time_horizon,
max_step_complete=True,
vec_obs_size=1,
num_vis_obs=0,
action_space=[2],
)
trajectory_queue.put(trajectory)
trainer.advance()
policy_queue.get(block=False)
# Check that get_step is correct
assert trainer.get_step == time_horizon
# Check that we can turn off the trainer and that the buffer is cleared
for _ in range(0, 5):
trajectory_queue.put(trajectory)
trainer.advance()
# Check that there is stuff in the policy queue
policy_queue.get(block=False)
# Check that if the policy doesn't update, we don't push it to the queue
trainer.set_is_policy_updating(False)
for _ in range(0, 10):
trajectory_queue.put(trajectory)
trainer.advance()
# Check that there nothing in the policy queue
with pytest.raises(AgentManagerQueue.Empty):
policy_queue.get(block=False)
# Check that the buffer has been cleared
assert not trainer.should_still_train
assert mocked_clear_update_buffer.call_count > 0