您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
251 行
8.5 KiB
251 行
8.5 KiB
import pytest
|
|
|
|
import numpy as np
|
|
|
|
import yaml
|
|
|
|
from mlagents.trainers.ghost.trainer import GhostTrainer
|
|
from mlagents.trainers.ghost.controller import GhostController
|
|
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
|
|
from mlagents.trainers.ppo.trainer import PPOTrainer
|
|
from mlagents.trainers.brain import BrainParameters
|
|
from mlagents.trainers.agent_processor import AgentManagerQueue
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
trainer: ppo
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
normalize: true
|
|
memory_size: 8
|
|
curiosity_strength: 0.0
|
|
curiosity_enc_size: 1
|
|
summary_path: test
|
|
model_path: test
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
self_play:
|
|
window: 5
|
|
play_against_current_self_ratio: 0.5
|
|
save_steps: 1000
|
|
swap_steps: 1000
|
|
"""
|
|
)
|
|
|
|
|
|
VECTOR_ACTION_SPACE = [1]
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 513
|
|
NUM_AGENTS = 12
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_load_and_set(dummy_config, use_discrete):
|
|
mock_brain = mb.setup_mock_brain(
|
|
use_discrete,
|
|
False,
|
|
vector_action_space=VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
discrete_action_space=DISCRETE_ACTION_SPACE,
|
|
)
|
|
|
|
trainer_params = dummy_config
|
|
trainer = PPOTrainer(mock_brain.brain_name, 0, trainer_params, True, False, 0, "0")
|
|
trainer.seed = 1
|
|
policy = trainer.create_policy(mock_brain.brain_name, mock_brain)
|
|
policy.create_tf_graph()
|
|
trainer.seed = 20 # otherwise graphs are the same
|
|
to_load_policy = trainer.create_policy(mock_brain.brain_name, mock_brain)
|
|
to_load_policy.create_tf_graph()
|
|
to_load_policy.init_load_weights()
|
|
|
|
weights = policy.get_weights()
|
|
load_weights = to_load_policy.get_weights()
|
|
try:
|
|
for w, lw in zip(weights, load_weights):
|
|
np.testing.assert_array_equal(w, lw)
|
|
except AssertionError:
|
|
pass
|
|
|
|
to_load_policy.load_weights(weights)
|
|
load_weights = to_load_policy.get_weights()
|
|
|
|
for w, lw in zip(weights, load_weights):
|
|
np.testing.assert_array_equal(w, lw)
|
|
|
|
|
|
def test_process_trajectory(dummy_config):
|
|
brain_params_team0 = BrainParameters(
|
|
brain_name="test_brain?team=0",
|
|
vector_observation_space_size=1,
|
|
camera_resolutions=[],
|
|
vector_action_space_size=[2],
|
|
vector_action_descriptions=[],
|
|
vector_action_space_type=0,
|
|
)
|
|
|
|
brain_name = BehaviorIdentifiers.from_name_behavior_id(
|
|
brain_params_team0.brain_name
|
|
).brain_name
|
|
|
|
brain_params_team1 = BrainParameters(
|
|
brain_name="test_brain?team=1",
|
|
vector_observation_space_size=1,
|
|
camera_resolutions=[],
|
|
vector_action_space_size=[2],
|
|
vector_action_descriptions=[],
|
|
vector_action_space_type=0,
|
|
)
|
|
dummy_config["summary_path"] = "./summaries/test_trainer_summary"
|
|
dummy_config["model_path"] = "./models/test_trainer_models/TestModel"
|
|
ppo_trainer = PPOTrainer(brain_name, 0, dummy_config, True, False, 0, "0")
|
|
controller = GhostController(100)
|
|
trainer = GhostTrainer(
|
|
ppo_trainer, brain_name, controller, 0, dummy_config, True, "0"
|
|
)
|
|
|
|
# first policy encountered becomes policy trained by wrapped PPO
|
|
parsed_behavior_id0 = BehaviorIdentifiers.from_name_behavior_id(
|
|
brain_params_team0.brain_name
|
|
)
|
|
policy = trainer.create_policy(parsed_behavior_id0, brain_params_team0)
|
|
trainer.add_policy(parsed_behavior_id0, policy)
|
|
trajectory_queue0 = AgentManagerQueue(brain_params_team0.brain_name)
|
|
trainer.subscribe_trajectory_queue(trajectory_queue0)
|
|
|
|
# Ghost trainer should ignore this queue because off policy
|
|
parsed_behavior_id1 = BehaviorIdentifiers.from_name_behavior_id(
|
|
brain_params_team1.brain_name
|
|
)
|
|
policy = trainer.create_policy(parsed_behavior_id1, brain_params_team1)
|
|
trainer.add_policy(parsed_behavior_id1, policy)
|
|
trajectory_queue1 = AgentManagerQueue(brain_params_team1.brain_name)
|
|
trainer.subscribe_trajectory_queue(trajectory_queue1)
|
|
|
|
time_horizon = 15
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
max_step_complete=True,
|
|
vec_obs_size=1,
|
|
num_vis_obs=0,
|
|
action_space=[2],
|
|
)
|
|
trajectory_queue0.put(trajectory)
|
|
trainer.advance()
|
|
|
|
# Check that trainer put trajectory in update buffer
|
|
assert trainer.trainer.update_buffer.num_experiences == 15
|
|
|
|
trajectory_queue1.put(trajectory)
|
|
trainer.advance()
|
|
|
|
# Check that ghost trainer ignored off policy queue
|
|
assert trainer.trainer.update_buffer.num_experiences == 15
|
|
# Check that it emptied the queue
|
|
assert trajectory_queue1.empty()
|
|
|
|
|
|
def test_publish_queue(dummy_config):
|
|
brain_params_team0 = BrainParameters(
|
|
brain_name="test_brain?team=0",
|
|
vector_observation_space_size=8,
|
|
camera_resolutions=[],
|
|
vector_action_space_size=[1],
|
|
vector_action_descriptions=[],
|
|
vector_action_space_type=0,
|
|
)
|
|
|
|
parsed_behavior_id0 = BehaviorIdentifiers.from_name_behavior_id(
|
|
brain_params_team0.brain_name
|
|
)
|
|
|
|
brain_name = parsed_behavior_id0.brain_name
|
|
|
|
brain_params_team1 = BrainParameters(
|
|
brain_name="test_brain?team=1",
|
|
vector_observation_space_size=8,
|
|
camera_resolutions=[],
|
|
vector_action_space_size=[1],
|
|
vector_action_descriptions=[],
|
|
vector_action_space_type=0,
|
|
)
|
|
dummy_config["summary_path"] = "./summaries/test_trainer_summary"
|
|
dummy_config["model_path"] = "./models/test_trainer_models/TestModel"
|
|
ppo_trainer = PPOTrainer(brain_name, 0, dummy_config, True, False, 0, "0")
|
|
controller = GhostController(100)
|
|
trainer = GhostTrainer(
|
|
ppo_trainer, brain_name, controller, 0, dummy_config, True, "0"
|
|
)
|
|
|
|
# First policy encountered becomes policy trained by wrapped PPO
|
|
# This queue should remain empty after swap snapshot
|
|
policy = trainer.create_policy(parsed_behavior_id0, brain_params_team0)
|
|
trainer.add_policy(parsed_behavior_id0, policy)
|
|
policy_queue0 = AgentManagerQueue(brain_params_team0.brain_name)
|
|
trainer.publish_policy_queue(policy_queue0)
|
|
|
|
# Ghost trainer should use this queue for ghost policy swap
|
|
parsed_behavior_id1 = BehaviorIdentifiers.from_name_behavior_id(
|
|
brain_params_team1.brain_name
|
|
)
|
|
policy = trainer.create_policy(parsed_behavior_id1, brain_params_team1)
|
|
trainer.add_policy(parsed_behavior_id1, policy)
|
|
policy_queue1 = AgentManagerQueue(brain_params_team1.brain_name)
|
|
trainer.publish_policy_queue(policy_queue1)
|
|
|
|
# check ghost trainer swap pushes to ghost queue and not trainer
|
|
assert policy_queue0.empty() and policy_queue1.empty()
|
|
trainer._swap_snapshots()
|
|
assert policy_queue0.empty() and not policy_queue1.empty()
|
|
# clear
|
|
policy_queue1.get(block=False)
|
|
|
|
mock_brain = mb.setup_mock_brain(
|
|
False,
|
|
False,
|
|
vector_action_space=VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
discrete_action_space=DISCRETE_ACTION_SPACE,
|
|
)
|
|
|
|
buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, mock_brain)
|
|
# Mock out reward signal eval
|
|
buffer["extrinsic_rewards"] = buffer["environment_rewards"]
|
|
buffer["extrinsic_returns"] = buffer["environment_rewards"]
|
|
buffer["extrinsic_value_estimates"] = buffer["environment_rewards"]
|
|
buffer["curiosity_rewards"] = buffer["environment_rewards"]
|
|
buffer["curiosity_returns"] = buffer["environment_rewards"]
|
|
buffer["curiosity_value_estimates"] = buffer["environment_rewards"]
|
|
buffer["advantages"] = buffer["environment_rewards"]
|
|
trainer.trainer.update_buffer = buffer
|
|
|
|
# when ghost trainer advance and wrapped trainer buffers full
|
|
# the wrapped trainer pushes updated policy to correct queue
|
|
assert policy_queue0.empty() and policy_queue1.empty()
|
|
trainer.advance()
|
|
assert not policy_queue0.empty() and policy_queue1.empty()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|