Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

55 行
1.8 KiB

from mlagents_envs.registry import default_registry
from mlagents_envs.side_channel.engine_configuration_channel import (
EngineConfigurationChannel,
)
from mlagents_envs.base_env import ActionTuple
import numpy as np
BALL_ID = "3DBall"
def test_set_action_single_agent():
engine_config_channel = EngineConfigurationChannel()
env = default_registry[BALL_ID].make(
base_port=6000,
worker_id=0,
no_graphics=True,
side_channels=[engine_config_channel],
)
engine_config_channel.set_configuration_parameters(time_scale=100)
for _ in range(3):
env.reset()
behavior_name = list(env.behavior_specs.keys())[0]
d, t = env.get_steps(behavior_name)
for _ in range(50):
for agent_id in d.agent_id:
action = np.ones((1, 2))
action_tuple = ActionTuple()
action_tuple.add_continuous(action)
env.set_action_for_agent(behavior_name, agent_id, action_tuple)
env.step()
d, t = env.get_steps(behavior_name)
env.close()
def test_set_action_multi_agent():
engine_config_channel = EngineConfigurationChannel()
env = default_registry[BALL_ID].make(
base_port=6001,
worker_id=0,
no_graphics=True,
side_channels=[engine_config_channel],
)
engine_config_channel.set_configuration_parameters(time_scale=100)
for _ in range(3):
env.reset()
behavior_name = list(env.behavior_specs.keys())[0]
d, t = env.get_steps(behavior_name)
for _ in range(50):
action = np.ones((len(d), 2))
action_tuple = ActionTuple()
action_tuple.add_continuous(action)
env.set_actions(behavior_name, action_tuple)
env.step()
d, t = env.get_steps(behavior_name)
env.close()