您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
210 行
8.7 KiB
210 行
8.7 KiB
import logging
|
|
|
|
import tensorflow as tf
|
|
from tensorflow.python.client import device_lib
|
|
from mlagents.envs.timers import timed
|
|
from mlagents.trainers.models import EncoderType, LearningRateSchedule
|
|
from mlagents.trainers.ppo.policy import PPOPolicy
|
|
from mlagents.trainers.ppo.models import PPOModel
|
|
from mlagents.trainers.components.reward_signals.reward_signal_factory import (
|
|
create_reward_signal,
|
|
)
|
|
|
|
# Variable scope in which created variables will be placed under
|
|
TOWER_SCOPE_NAME = "tower"
|
|
|
|
logger = logging.getLogger("mlagents.trainers")
|
|
|
|
|
|
class MultiGpuPPOPolicy(PPOPolicy):
|
|
def __init__(self, seed, brain, trainer_params, is_training, load):
|
|
"""
|
|
Policy for Proximal Policy Optimization Networks with multi-GPU training
|
|
:param seed: Random seed.
|
|
:param brain: Assigned Brain object.
|
|
:param trainer_params: Defined training parameters.
|
|
:param is_training: Whether the model should be trained.
|
|
:param load: Whether a pre-trained model will be loaded or a new one created.
|
|
"""
|
|
super().__init__(seed, brain, trainer_params, is_training, load)
|
|
|
|
def create_model(
|
|
self, brain, trainer_params, reward_signal_configs, is_training, load, seed
|
|
):
|
|
"""
|
|
Create PPO models, one on each device
|
|
:param brain: Assigned Brain object.
|
|
:param trainer_params: Defined training parameters.
|
|
:param reward_signal_configs: Reward signal config
|
|
:param seed: Random seed.
|
|
"""
|
|
self.devices = get_devices()
|
|
self.towers = []
|
|
with self.graph.as_default():
|
|
with tf.variable_scope("", reuse=tf.AUTO_REUSE):
|
|
for device in self.devices:
|
|
with tf.device(device):
|
|
self.towers.append(
|
|
PPOModel(
|
|
brain=brain,
|
|
lr=float(trainer_params["learning_rate"]),
|
|
lr_schedule=LearningRateSchedule(
|
|
trainer_params.get(
|
|
"learning_rate_schedule", "linear"
|
|
)
|
|
),
|
|
h_size=int(trainer_params["hidden_units"]),
|
|
epsilon=float(trainer_params["epsilon"]),
|
|
beta=float(trainer_params["beta"]),
|
|
max_step=float(trainer_params["max_steps"]),
|
|
normalize=trainer_params["normalize"],
|
|
use_recurrent=trainer_params["use_recurrent"],
|
|
num_layers=int(trainer_params["num_layers"]),
|
|
m_size=self.m_size,
|
|
seed=seed,
|
|
stream_names=list(reward_signal_configs.keys()),
|
|
vis_encode_type=EncoderType(
|
|
trainer_params.get("vis_encode_type", "simple")
|
|
),
|
|
)
|
|
)
|
|
self.towers[-1].create_ppo_optimizer()
|
|
self.model = self.towers[0]
|
|
avg_grads = self.average_gradients([t.grads for t in self.towers])
|
|
update_batch = self.model.optimizer.apply_gradients(avg_grads)
|
|
|
|
avg_value_loss = tf.reduce_mean(
|
|
tf.stack([model.value_loss for model in self.towers]), 0
|
|
)
|
|
avg_policy_loss = tf.reduce_mean(
|
|
tf.stack([model.policy_loss for model in self.towers]), 0
|
|
)
|
|
|
|
self.inference_dict.update(
|
|
{
|
|
"action": self.model.output,
|
|
"log_probs": self.model.all_log_probs,
|
|
"value_heads": self.model.value_heads,
|
|
"value": self.model.value,
|
|
"entropy": self.model.entropy,
|
|
"learning_rate": self.model.learning_rate,
|
|
}
|
|
)
|
|
if self.use_continuous_act:
|
|
self.inference_dict["pre_action"] = self.model.output_pre
|
|
if self.use_recurrent:
|
|
self.inference_dict["memory_out"] = self.model.memory_out
|
|
if (
|
|
is_training
|
|
and self.use_vec_obs
|
|
and trainer_params["normalize"]
|
|
and not load
|
|
):
|
|
self.inference_dict["update_mean"] = self.model.update_normalization
|
|
|
|
self.total_policy_loss = self.model.abs_policy_loss
|
|
self.update_dict.update(
|
|
{
|
|
"value_loss": avg_value_loss,
|
|
"policy_loss": avg_policy_loss,
|
|
"update_batch": update_batch,
|
|
}
|
|
)
|
|
|
|
def create_reward_signals(self, reward_signal_configs):
|
|
"""
|
|
Create reward signals
|
|
:param reward_signal_configs: Reward signal config.
|
|
"""
|
|
self.reward_signal_towers = []
|
|
with self.graph.as_default():
|
|
with tf.variable_scope(TOWER_SCOPE_NAME, reuse=tf.AUTO_REUSE):
|
|
for device_id, device in enumerate(self.devices):
|
|
with tf.device(device):
|
|
reward_tower = {}
|
|
for reward_signal, config in reward_signal_configs.items():
|
|
reward_tower[reward_signal] = create_reward_signal(
|
|
self, self.towers[device_id], reward_signal, config
|
|
)
|
|
for k, v in reward_tower[reward_signal].update_dict.items():
|
|
self.update_dict[k + "_" + str(device_id)] = v
|
|
self.reward_signal_towers.append(reward_tower)
|
|
for _, reward_tower in self.reward_signal_towers[0].items():
|
|
for _, update_key in reward_tower.stats_name_to_update_name.items():
|
|
all_reward_signal_stats = tf.stack(
|
|
[
|
|
self.update_dict[update_key + "_" + str(i)]
|
|
for i in range(len(self.towers))
|
|
]
|
|
)
|
|
mean_reward_signal_stats = tf.reduce_mean(
|
|
all_reward_signal_stats, 0
|
|
)
|
|
self.update_dict.update({update_key: mean_reward_signal_stats})
|
|
|
|
self.reward_signals = self.reward_signal_towers[0]
|
|
|
|
@timed
|
|
def update(self, mini_batch, num_sequences):
|
|
"""
|
|
Updates model using buffer.
|
|
:param n_sequences: Number of trajectories in batch.
|
|
:param mini_batch: Experience batch.
|
|
:return: Output from update process.
|
|
"""
|
|
feed_dict = {}
|
|
stats_needed = self.stats_name_to_update_name
|
|
|
|
device_batch_size = num_sequences // len(self.devices)
|
|
device_batches = []
|
|
for i in range(len(self.devices)):
|
|
device_batches.append(
|
|
{
|
|
k: v[
|
|
i * device_batch_size : i * device_batch_size
|
|
+ device_batch_size
|
|
]
|
|
for (k, v) in mini_batch.items()
|
|
}
|
|
)
|
|
|
|
for batch, tower, reward_tower in zip(
|
|
device_batches, self.towers, self.reward_signal_towers
|
|
):
|
|
feed_dict.update(self.construct_feed_dict(tower, batch, num_sequences))
|
|
stats_needed.update(self.stats_name_to_update_name)
|
|
for _, reward_signal in reward_tower.items():
|
|
feed_dict.update(
|
|
reward_signal.prepare_update(tower, batch, num_sequences)
|
|
)
|
|
stats_needed.update(reward_signal.stats_name_to_update_name)
|
|
|
|
update_vals = self._execute_model(feed_dict, self.update_dict)
|
|
update_stats = {}
|
|
for stat_name, update_name in stats_needed.items():
|
|
update_stats[stat_name] = update_vals[update_name]
|
|
return update_stats
|
|
|
|
def average_gradients(self, tower_grads):
|
|
"""
|
|
Average gradients from all towers
|
|
:param tower_grads: Gradients from all towers
|
|
"""
|
|
average_grads = []
|
|
for grad_and_vars in zip(*tower_grads):
|
|
grads = [g for g, _ in grad_and_vars if g is not None]
|
|
if not grads:
|
|
continue
|
|
avg_grad = tf.reduce_mean(tf.stack(grads), 0)
|
|
var = grad_and_vars[0][1]
|
|
average_grads.append((avg_grad, var))
|
|
return average_grads
|
|
|
|
|
|
def get_devices():
|
|
"""
|
|
Get all available GPU devices
|
|
"""
|
|
local_device_protos = device_lib.list_local_devices()
|
|
devices = [x.name for x in local_device_protos if x.device_type == "GPU"]
|
|
return devices
|