Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

62 行
2.2 KiB

import logging
import numpy as np
import sys
from unittest import mock
from mlagents.envs.communicator_objects.agent_info_pb2 import AgentInfoProto
from mlagents.envs.brain import BrainInfo, BrainParameters
test_brain = BrainParameters(
brain_name="test_brain",
vector_observation_space_size=3,
num_stacked_vector_observations=1,
camera_resolutions=[],
vector_action_space_size=[],
vector_action_descriptions=[],
vector_action_space_type=1,
)
@mock.patch.object(np, "nan_to_num", wraps=np.nan_to_num)
@mock.patch.object(logging.Logger, "warning")
def test_from_agent_proto_nan(mock_warning, mock_nan_to_num):
agent_info_proto = AgentInfoProto()
agent_info_proto.stacked_vector_observation.extend([1.0, 2.0, float("nan")])
brain_info = BrainInfo.from_agent_proto(1, [agent_info_proto], test_brain)
# nan gets set to 0.0
expected = [1.0, 2.0, 0.0]
assert (brain_info.vector_observations == expected).all()
mock_nan_to_num.assert_called()
mock_warning.assert_called()
@mock.patch.object(np, "nan_to_num", wraps=np.nan_to_num)
@mock.patch.object(logging.Logger, "warning")
def test_from_agent_proto_inf(mock_warning, mock_nan_to_num):
agent_info_proto = AgentInfoProto()
agent_info_proto.stacked_vector_observation.extend([1.0, float("inf"), 0.0])
brain_info = BrainInfo.from_agent_proto(1, [agent_info_proto], test_brain)
# inf should get set to float_max
expected = [1.0, sys.float_info.max, 0.0]
assert (brain_info.vector_observations == expected).all()
mock_nan_to_num.assert_called()
# We don't warn on inf, just NaN
mock_warning.assert_not_called()
@mock.patch.object(np, "nan_to_num", wraps=np.nan_to_num)
@mock.patch.object(logging.Logger, "warning")
def test_from_agent_proto_fast_path(mock_warning, mock_nan_to_num):
"""
Check that all finite values skips the nan_to_num call
"""
agent_info_proto = AgentInfoProto()
agent_info_proto.stacked_vector_observation.extend([1.0, 2.0, 3.0])
brain_info = BrainInfo.from_agent_proto(1, [agent_info_proto], test_brain)
expected = [1.0, 2.0, 3.0]
assert (brain_info.vector_observations == expected).all()
mock_nan_to_num.assert_not_called()
mock_warning.assert_not_called()